Motivation How we co-design mobility systems Network Modeling Co-Design Mobility Co-Design How it works in practice Modularity and Compositionality Conclusions 0000 00 0000 0000 0000 0000 0000 0000 0

On the Co-Design of AV-Enabled Mobility Systems

IEEE International Conference on Intelligent Transportation Systems 2020 G. Zardini^{1,4}, N. Lanzetti^{2,4}, M. Salazar³, A. Censi¹, E. Frazzoli¹, and M. Pavone⁴

¹Institute for Dynamic Systems and Control (IDSC), ETH Zürich

²Automatic Control Lab, ETH Zürich

³Control Systems Technology Group, Eindhoven University of Technology

⁴Autonomous Systems Lab, Stanford University

ETH zürich

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 •000
 00
 0000
 0000
 00000
 0000
 0
 0
 0

The mobility ecosystem has dramatically changed over the years

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 0 ● 00
 00
 0000
 0000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

More modes, more actors, more interactions

You cannot assess the impact of MSs without a co-design framework

Decline in New York City Subway, Bus Ridership

Usage dips for mass transit coincided with taxi and ride-hailing trips, data shows

July 20, 2018

Pave Over the Subway? Cities Face Tough Bets on Driverless Cars

- +5.7 billion miles caused by app-based taxis, deadheading 30-60% of the time.
- Only 30% of e-scooters (ESs) rides substitute cars.

There are many questions to be answered

General questions:

- How should cities invest in the future of mobility?
- How should cities regulate the introduction of new mobility solutions?
- Will the outcome be socially, economically, and environmentally sustainable?

Particular questions:

- How performant should AVs be?
- What is the best fleet size?
- How will AVs affect public transportation systems?

To answer these questions, we need to co-design the whole system

Motivation How we co-design mobility systems Network Modeling Co-Design Mobility Co-Design How it works in practice Modularity and Compositionality Conclusions 0000 $\mathbf{\Phi}$ 0000 0000 0000 0000 <td

You cannot decouple optimization problems of the single mobility solutions

State of the art fails to address coupled mobility design problems

Fleet sizing for flexible carsharing systems: Simulation-based approach [Barrios et al., 2014]

Towards a systematic approach to the design and evaluation of AMoD systems: a case study of Singapore [Spieser et al., 2014]

Autonomous Mobility-on-Demand systems for urban mobility [Pavone et al., 2014]

Dynamic ride-sharing and fleet sizing for a systen of shared autonomous vehicles in Austin, Texas [Fagnant et al., 2018]

A review of urban transportation network design problems [Farahani et al., 2013]

Co-design of traffic network topology and control measures [Cong et al., 2015]

Estimating the potential for shared autonomous scooters [Kondor et al., 2019]

You cannot decouple optimization problems of the single mobility solutions

State of the art fails to address coupled mobility design problems

- 1) No joint design of MSs and MSs-enabled mobility systems.
- 2) No compositional framework: Problem-specific, non-modular.
- 3) Not producing actionable information for stakeholders.
- 4) No long-term planning perspective.

How we co-design mobility systems

00

5) Not considering interactions: No game-theoretical formulation.

A review of urban transportation network design problems [Farahani et al., 2013]

Co-design of traffic network topology and control measures [Cong et al., 2015]

Estimating the potential for shared autonomous scooters [Kondor et al., 2019]

We want to co-design a full intermodal mobility system

The design of MSs and the one of the mobility system they enable are closely coupled

Scope

We develop a **co-design** framework to solve the problem of *designing* and *deploying* an intermodal mobility system from a **central authority perspective** by means of

- Fleet sizes,
- performance of the vehicles,
- public transit infrastructure,

optimizing for the system's

- performance,
- costs, and
- environmental footprint.

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 0000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

Modeling – Network flow model for intermodal AMoD

- Mesoscopic analysis: Granularity level between microscopic and macroscopic.
- Network flow model: Trips are flows, not particles.
- Time-invariant model: We condense a time duration in one second.

Modeling – Network flow model for intermodal AMoD

Travel Requests

Travel requests are given by their origin, destination, and rate.

Constraints

Linear system constrained by

- Demand satisfaction.
- Flow conservation (including rebalancing policies).
- Road congestion.
- Flows are non-negative.

Modeling – Travel time and speed

Road

- Each road arc has a speed limit.
- AVs safety protocols impose a maximum achievable speed.
- Too slow AVs are dangerous: we consider a minimum speed as well.

Pedestrians

Constant walking speed on each walking arc.

Public Transportation System

The public transit system operates at each node with a specific frequency.

Intermodality

We model specific delays for specific mode switches.

Modeling – Energy consumptions and fleet size

Energy Consumption and Emissions

AVs:

- Urban driving cycle.
- Energy consumptions and emissions are proportional to the driven distance.

Public Transportation:

- We assume customers-independent operation.
- Constant energy consumption per unit time.

AVs Fleet Size

- We consider a variable AVs fleet size.
- We limit it to the numer of vehicles available in the system.

We need a modular and compositional framework

We need a framework which allows to structure the mobility system design problem in a **modular** and **compositional** way

Mathematical theory of Co-Design

A mathematical theory of Co-Design [Censi, 2015]

A class of Co-Design problems with cyclic constraints and their solution [Censi, 2017]

Offers a formalization of Co-Design problems

Provides modularity and compositionality

Mathematical theory of Co-Design in few words

A design problem is a monotone relation between provided functionality and required resources

Co-Design

Mathematical theory of Co-Design in few words

A design problem is a monotone relation between provided functionality and required resources

Co-Design

Monotonicity:

- If functionality f is feasible with resource r, then any $f' \leq_{\mathcal{F}} f$ is feasible with r.
- If functionality f is feasible with resource r, then f is feasible with any resource $r' \succeq_{\mathcal{R}} r$.

Typical queries:

- Given a certain functionality *f* ∈ *F*, find the minimal resources *r* ∈ *R* that can realize it, or provide a proof that there are none.
- Given certain resources $r \in \mathcal{R}$, find the maximal functionality $f \in \mathcal{F}$ that can be realized, or provide a proof that there are none.

You can compose design problems in series, parallel and loop

Diagrammatic interconnection represents co-design constraints:

... and many more.

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 0000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

The AV design problem

We model vehicle autonomy as a monotone function of vehicle costs

Functionality:

• Maximal achievable speed.

Resources:

- Vehicle fixed costs.
- Vehicle operational costs.

Functionality to resources relation:

- Higher speed requires more advanced technology.
- Achievable speed as monotone function of costs.

The public transportation and I-AMoD design problems

Putting things together: The monotone Co-Design problem

Functionality:

• Total demand.

Resources:

- Total system costs.
- Average travel time per trip.
- Total system emissions.

		Mobility Co-Design		
		0000		

Co-Design user experience

The AV model in the Co-Design language:

```
catalogue {
    # Functionality
    provides velocity [miles/hour]
    # Resources
    requires fixed_cost [$]
    requires operational_cost [$/mile]

    model01 | 20 miles/hour | 29700 $ | 0.062 $/mile
    model02 | 25 miles/hour | 32200 $ | 0.062 $/mile
    model03 | 30 miles/hour | 32200 $ | 0.062 $/mile
    model04 | 35 miles/hour | 34700 $ | 0.062 $/mile
    model05 | 40 miles/hour | 35800 $ | 0.062 $/mile
    model06 | 45 miles/hour | 38000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model07 | 50 miles/hour | 39000 $ | 0.062 $/mile
    model08 | 0.062 $/mile
    model09 | 0.062 $/mile
    model00 | 0.062 $/mile
```


Case study – Washington D.C., USA

- Consider the D.C. intermodal network
 - Road and walking networks: OpenStreetMap
 - Public transit network: GTFS.
- Consider real demand: 15,872 travel requests.
- We want to find the optimal
 - Subway frequency in {100%, 133%, 200%}.
 - AVs speed in $\{20 \text{ mph}, 25 \text{ mph}, \dots, 50 \text{ mph}\}$.
 - AVs fleet size in $\{0, 500, \dots, 6000\}$.

to minimize

- Travel time,
- costs, and
- emissions.

We perform an analysis of different AV's automation costs

Parameter Baseline road usage		Variable u _{ij}			Value 93			Units %
			Case 1	Case 2.1	Case 2.2	Case 3.1	Case 3.2	
Vehicle operational cost		$C_{\rm v,o}$	0.084	0.084	0.062	0.084	0.084	USD/mile
Vehicle cost		$C_{\rm v,v}$	32,000	32,000	26,000	32,000	32,000	USD/car
	20 mph		15,000	20,000	3,700	0	500,000	USD/car
	25 mph		15,000	30,000	4,400	0	500,000	USD/car
	30 mph		15,000	55,000	6,200	0	500,000	USD/car
Vehicle automation cost	35 mph	$C_{\rm v,a}$	15,000	90,000	8,700	0	500,000	USD/car
	40 mph		15,000	115,000	9,800	0	500,000	USD/car
	45 mph		15,000	130,000	12,000	0	500,000	USD/car
	50 mph		15,000	150,000	13,000	0	500,000	USD/car
Vehicle life		l_v	5	5	5	5	5	years
CO ₂ per Joule		γ	0.14	0.14	0.14	0.14	0.14	8/kJ
Time from \mathscr{G}_W to \mathscr{G}_R		twR	300	300	300	300	300	s
Time from \mathscr{G}_{R} to \mathscr{G}_{W}		t _{RW}	60	60	60	60	60	s
Speed limit fraction		β	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	-
	100 %				148,000,00	0		USD/year
Subway operational cost	133 %	$C_{\rm s.o}$			197,000,00	0		USD/year
	200 %				295,000,00	0		USD/year
Subway fixed cost $C_{s,f}$		$C_{\rm s,f}$	14,500,000					
Train life Is			30					
Subway CO ₂ emissions per train $m_{CO_2,s}$			140					
Train fleet baseline ns.baseline			112					
Subway service frequency $\varphi_{i,\text{baselin}}$			16					
Time from \mathscr{G}_W to \mathscr{G}_P and vice-versa t_{WS}			60					s

Results for constant automation costs

We can measure the tradeoffs between system's performance, costs, and environmental impact:

MotivationHow we co-design mobility systemsNetwork ModelingCo-DesignMobility Co-DesignHow it works in practiceModularity and CompositionalityConclusions0000000000000000000000000000000000

We can always project multidimensional pareto fronts to lower dimensions

+

Emissions cost of 40 USD/kg

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 0000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Results for constant automation costs

We can measure the tradeoffs between system's performance and costs:

 Motivation
 How we co-design mobility systems
 Network Modeling
 Co-Design
 Mobility Co-Design
 How it works in practice
 Modularity and Compositionality
 Conclusions

 0000
 00
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

The framework is modular: Try adding transportation modes

To consider micromobility, we add a layer:

The framework is modular: Try adding transportation modes

To consider micromobility, we interconnect another design problem:

The framework is compositional: Model refinement

We can explode the AV model into a more complex one:

[Work in progress]

Conclusions - Co-Design gives a broader perspective on systems' design

- 1) No joint design of MSs and MSs-enabled mobility systems.
 - We provide a new perspective on the problem.
 - Pareto fronts of optimal solutions.
- 2) No compositional framework: Problem-specific, non-modular.
 - We can plug-in new modes of transportation.
 - We can refine model complexity.
- 3) Not producing actionable information for stakeholders.
 - We provide stakeholders with actionable information to reason about the problem.
 - Roundtable for discussions
- 4) No long-term planning perspective.
- 5) Not considering interactions: No game-theoretical formulation.

Papers and extended version of this talk at gioele.science/mobility