Co-Design of Autonomous Systems: From Hardware Selection to Control Synthesis

European Control Conference 2021

G. Zardini, A. Censi, and E. Frazzoli

Institute for Dynamic Systems and Control (IDSC) ETH Zürich

ETHzürich

gzardini@ethz.ch - http://gioele.science

The pain of engineering complex systems

hardwa

An autonomous = actuation robot = computation

energetics

So many **components** (hardware, software, ...), so many choices to make! Nobody can understand the **whole** thing!

anthropomorphization of 21st century engineering malaise



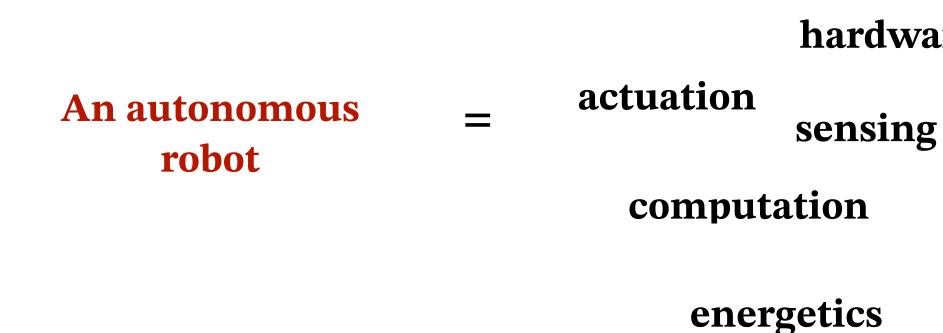
are	software	behavior		coordination	
	localization	n pla	planning		ocial
g		interaction		acceptance	
	control		1		-
pe	erception	mapping	napping learn		liability
	communic	ation	regul	ations	

We forget why we made some **choices**, and we are afraid to make **changes**...

These "computer" thingies are not helping us that much for design...

"My dear, it's simple: you lack a proper theory of co-design!"

Co-design of autonomous systems: from hardware selection to control synthesis



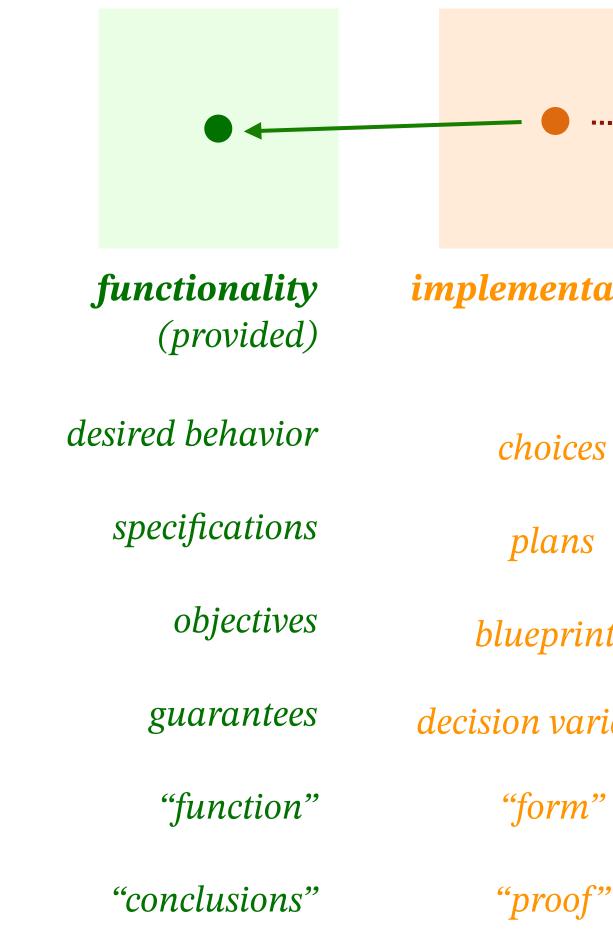
- **Takeways** of this talk:
 - -
 - Very **intuitive** modeling approach (no "acrobatics" needed) -
 - **Rich modeling capabilities**: analytic models, catalogues, simulations
 - **Compositionality** and **modularity** allow **interdisciplinary collaboration**
 - Co-design produces **actionable information** for designers to **reason** about their problems

vare	software	behavio	r	coord	ination
	localization	n pla	nning	social	
g		interaction		acceptance	
	control	1		•	
pe	erception	mapping	learn	ing	liability
	communic	ation	regulations		

Using co-design, it is easy to **embed** the synthesis of **controllers** into the co-design problem of the whole **autonomous robot**

An abstract view of design problems

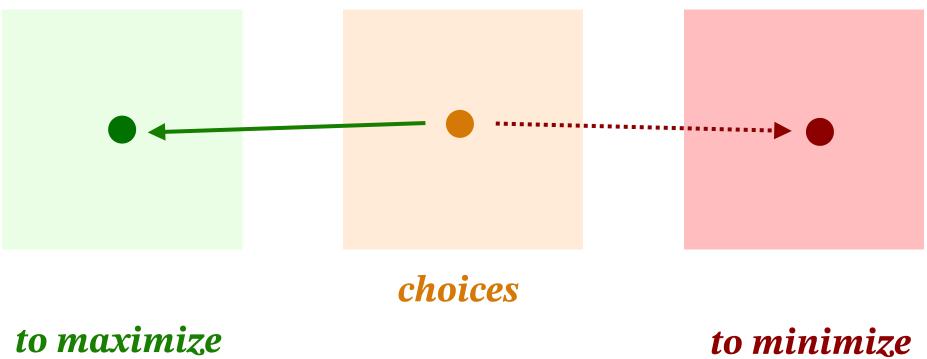
- Across fields, design or synthesis problems are defined with 3 spaces:
 - **implementation space:** the options we can choose from;
 - **functionality space**: what we need to provide/achieve;
 - **requirements/costs space**: the resources we need to have available;



_	►
ementations	costs, resources (required)
choices	
plans	requirenents
ueprints	dependencies
on variables	
"form"	"function"
"proof"	"assumptions"

An abstract view of design problems

- Across fields, design or synthesis problems are defined with 3 spaces:
 - **implementation space:** the options we can choose from;
 - **functionality space**: what we need to provide/achieve;
 - requirements/costs space: the resources we need to have available;



 $\langle \mathbf{R}, \leq_{\mathbf{R}} \rangle$

Partial orders allow to model various trade-offs

Definition. A *poset* is a tuple $\langle P, \leq_P \rangle$, where *P* is a set and \leq_P is a partial order, defined as a reflexive, transitive, and antisymmetric relation.

> All **totally ordered sets** are particular cases of **partially ordered sets**:

 $\langle \mathbb{R}_{\geq 0}, \leq \rangle \quad \langle \mathbb{N}, \leq \rangle$

Partial orders allow to model various trade-offs

Definition. A poset is a tuple $\langle P, \leq_P \rangle$, where P is a set and \leq_P is a partial order, defined as a reflexive, transitive, and antisymmetric relation.

> All **totally ordered sets** are particular cases of **partially ordered sets**: $\langle \mathbb{R}_{\geq 0}, \leq$

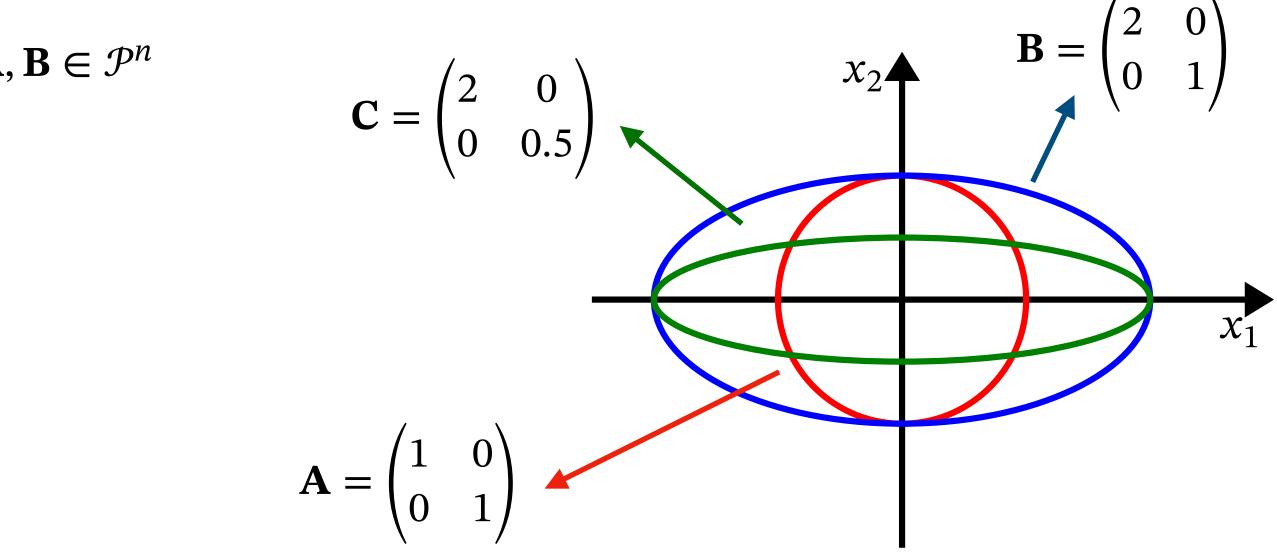
> In this work, among others, we consider the poset of **positive semi-definite matrices**

Definition. A symmetric matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ is positive semi-definite if $x^{\mathsf{T}}\mathbf{M}x \ge 0$ for all non-zero $x \in \mathbb{R}^n$. We call the set of all such matrices \mathcal{P}^n .

• We can define a **partial order** as $\mathbf{A} \leq \mathbf{B} \Leftrightarrow (\mathbf{B} - \mathbf{A}) \in \mathcal{P}^n$, $\mathbf{A}, \mathbf{B} \in \mathcal{P}^n$

- Symmetric matrices have real eigenvalues
- Can be interpreted as **axes lengths** of **ellipsoids**
- Order is given by **ellipsoids inclusion**

$$\leq \rangle \qquad \langle \mathbb{N}, \leq
angle$$

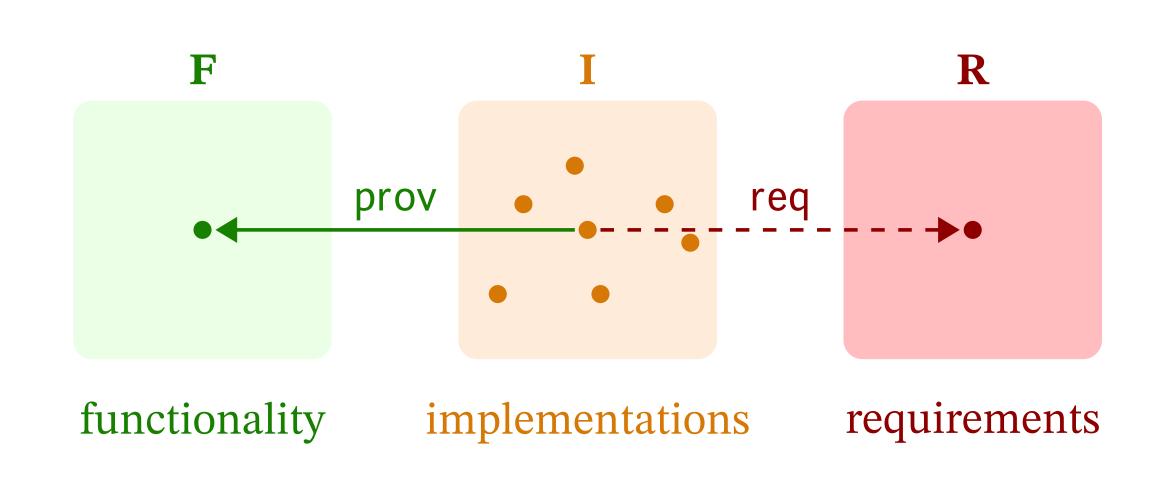


Design problem with implementation (DPIs)

Definition (Design problem with implementation). A design problem with im*plementation* (DPI) is a tuple

where:

- ▶ **F** is a poset, called *functionality space*;
- ▶ **R** is a poset, called *requirements space*;
- ▶ I is a set, called *implementation space*;
- \triangleright the map prov: $I \rightarrow F$ maps an implementation to the functionality it provides;

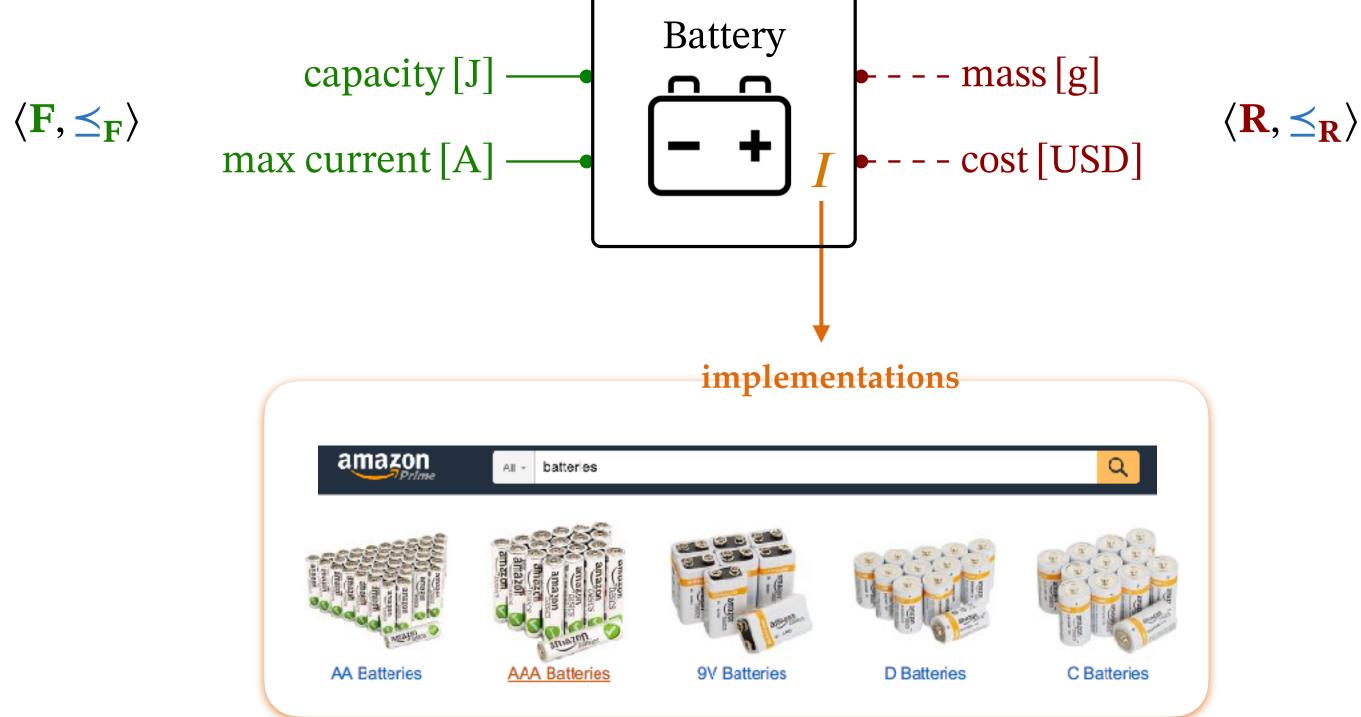


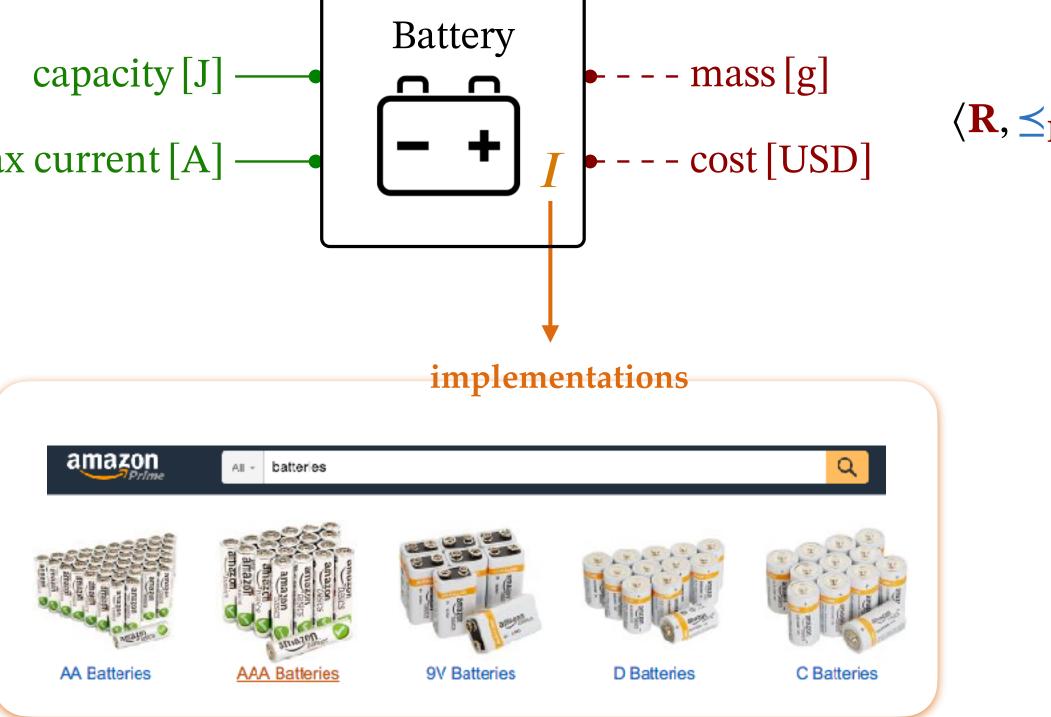
```
\langle \mathbf{F}, \mathbf{R}, \mathbf{I}, \text{prov}, \text{req} \rangle,
```

 \triangleright the map req : $\mathbf{I} \rightarrow \mathbf{R}$ maps an implementation to the resources it requires.

Graphical notation for DPIs

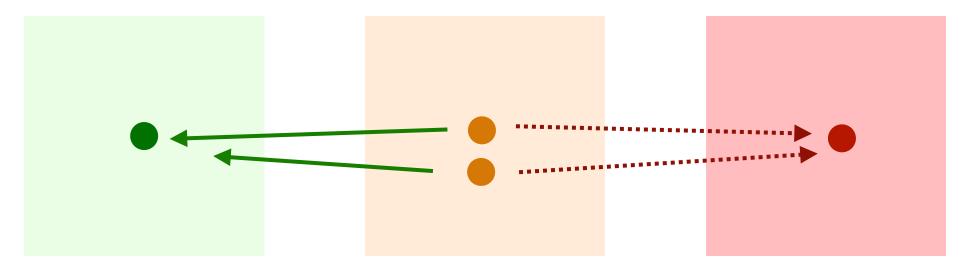
- We use this graphical notation:
 - functionality: green continuous wires on the left
 - requirements: **dashed red wires** on the right.

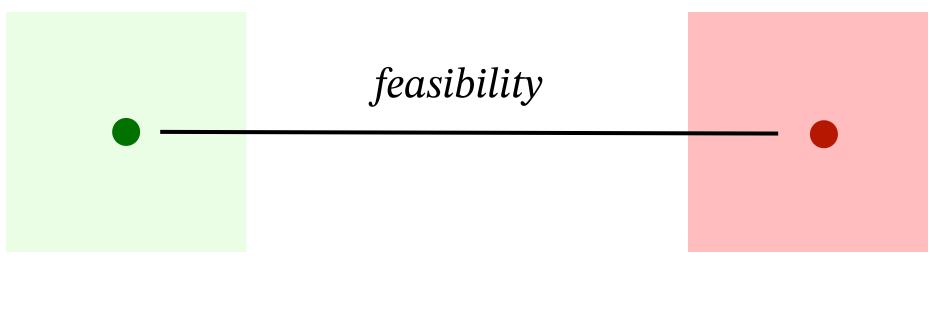




Engineering is constructive

- constructive.
- > We need to know what are the implementation(s), if any, that relate functionality and costs.





- **d**: $\mathbf{F}^{\mathrm{op}} \times \mathbf{R} \rightarrow_{\mathbf{Pos}} \mathbf{Bool}$

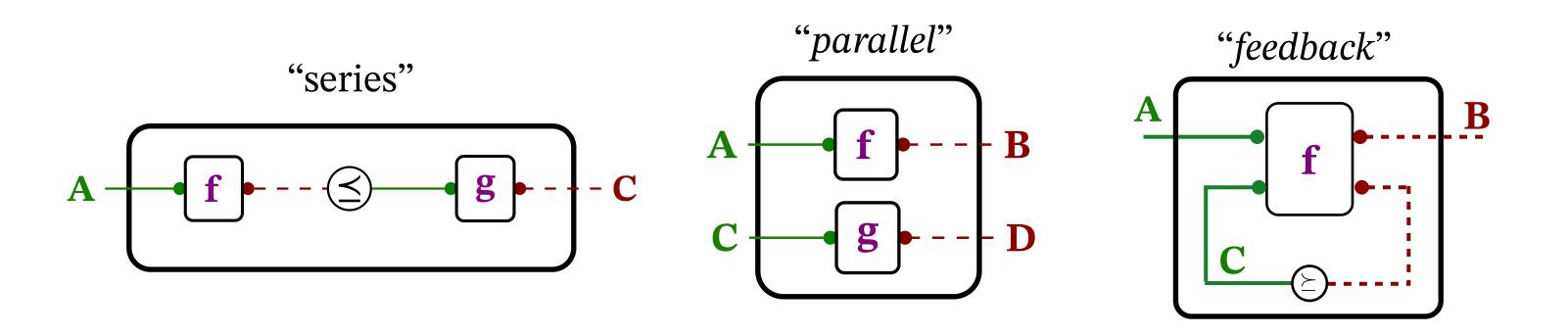
• For the purpose of design, we need to know how something is done, not just that it is possible to do something: engineering is

• For the algorithmic solution of co-design problem, it is useful to consider a direct feasibility relation from functionality to costs.

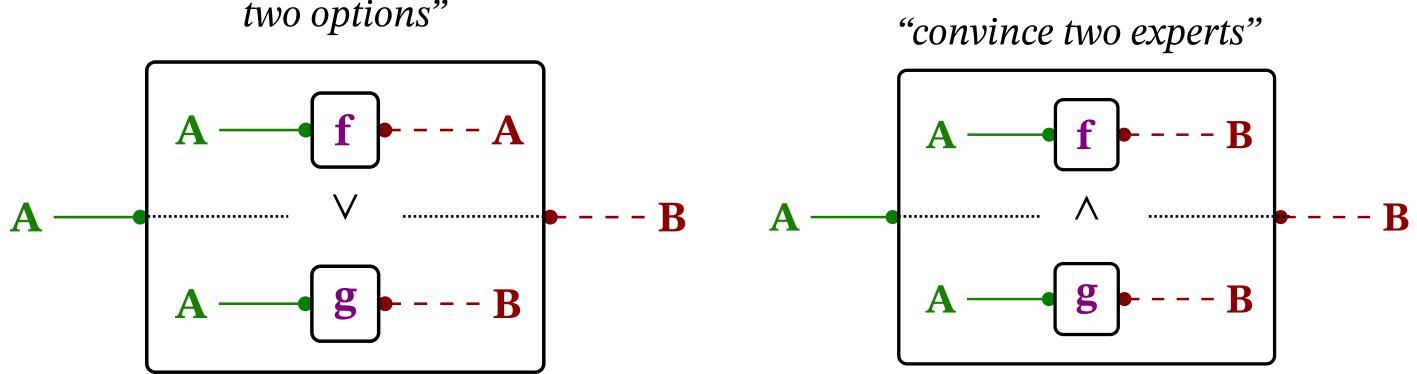
 $\langle f^*, r \rangle \mapsto \exists i \in \mathbf{I} : (f \leq_{\mathbf{F}} \operatorname{prov}(i)) \land (\operatorname{req}(i) \leq_{\mathbf{R}} r)$

> Monotone map: Lower functionalities does not require more resources, higher resources do not provide less functionalities

Composition operators



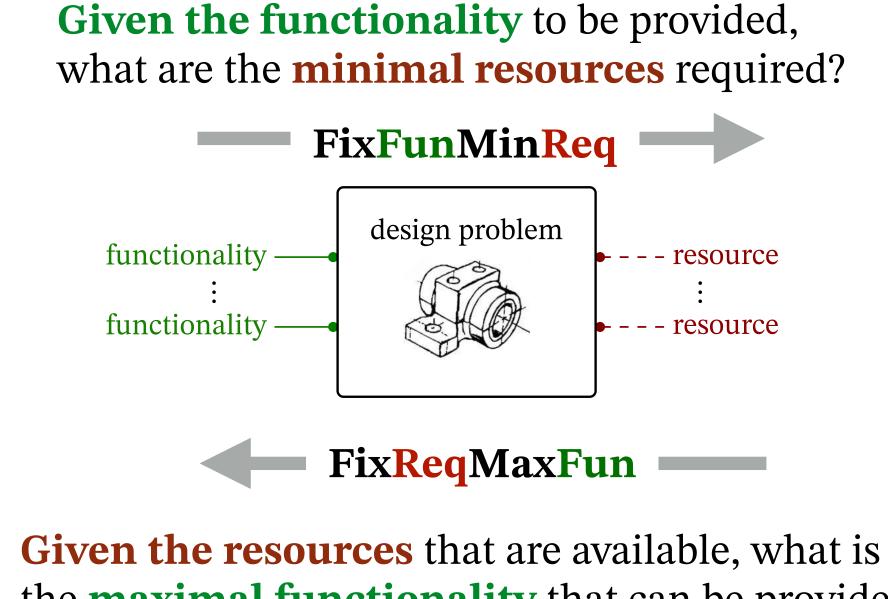
"choose between two options"



- The composition of any two DPs returns a DP (closure)
- Very practical tool to **decompose** large **problems** into **subproblems**

Design queries

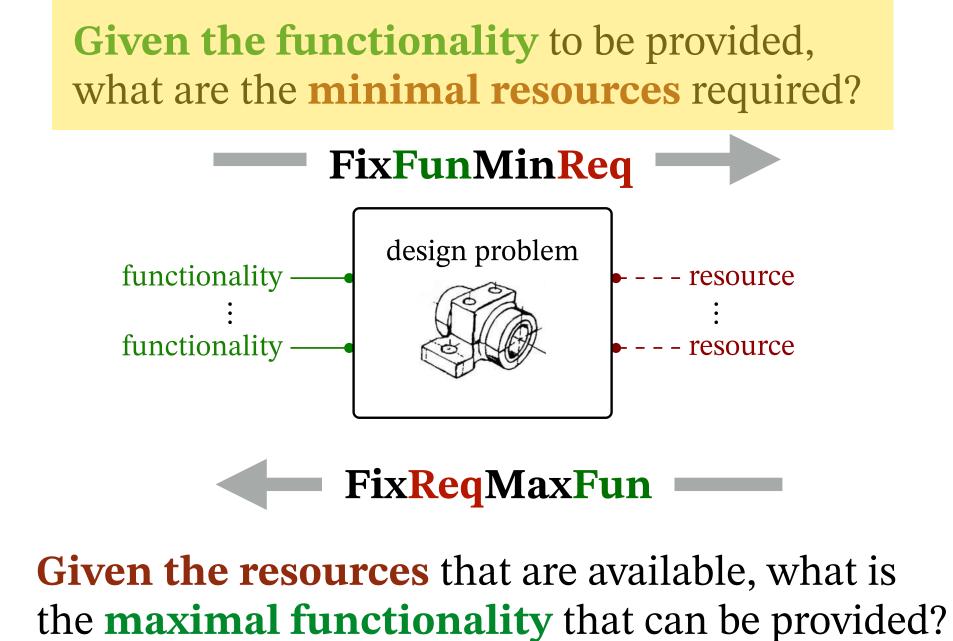
- Two basic design queries are:
 - **FixFunMinReq**: Fixed a lower bound on functionality, minimize the resources.
 - **FixReqMaxFun**: Fixed an upper bound on the resource, maximize the functionality



the **maximal functionality** that can be provided?

Design queries

- Two basic design queries are:
 - **FixFunMinReq**: Fixed a lower bound on functionality, minimize the resources.
 - **FixReqMaxFun**: Fixed an upper bound on the resource, maximize the functionality

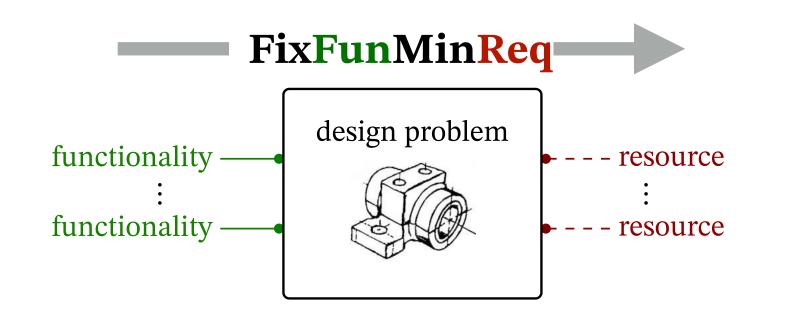


- > The two problems are **dual**
- From the solutions, one can retrieve the **implementations** (design choices)

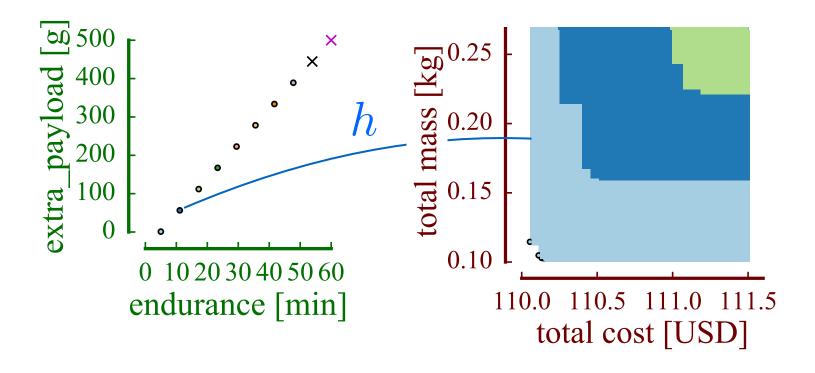
Design queries

- Two basic design queries are:
 - **FixFunMinReq**: Fixed a lower bound on functionality, minimize the resources.
 - **FixReqMaxFun**: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided, what are the **minimal resources** required?



- We are looking for:
 - A map from functionality to upper sets of feasible resources: $h : \mathbf{F} \to \mathcal{U}\mathbf{R}$
 - A map from functionality to antichains of minimal resources: $h: \mathbf{F} \to \mathcal{A}\mathbf{R}$

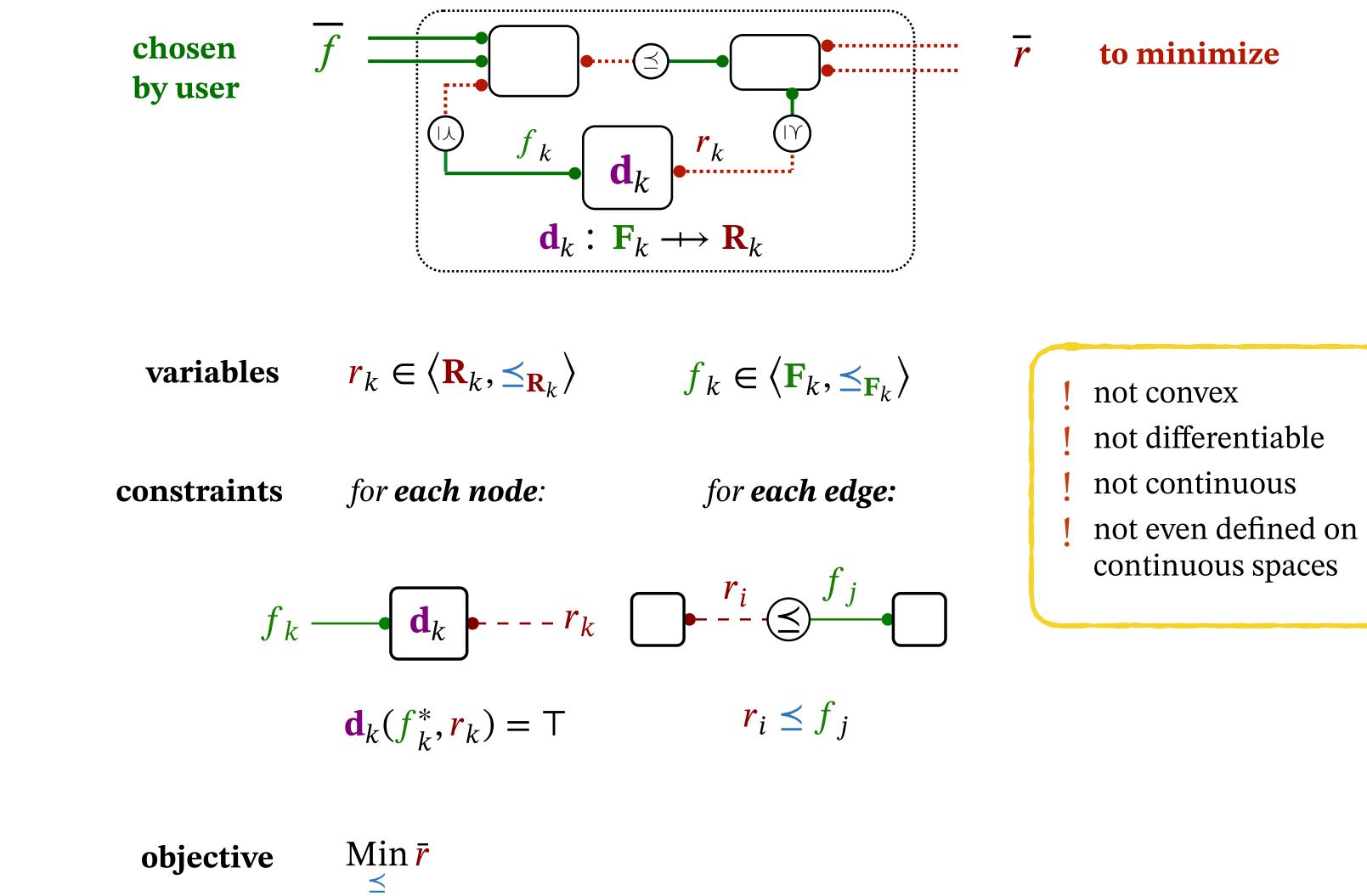


nimize the resources. aximize the functionality

 $: h: \mathbf{F} \to \mathcal{U}\mathbf{R}$ es: $h: \mathbf{F} \to \mathcal{A}\mathbf{R}$

Optimization semantics

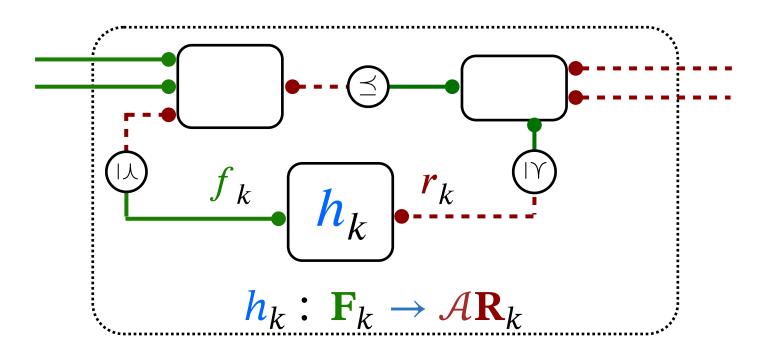
> This is the semantics of **FixFunMinReq** as a **family of optimization problems**.



objective

Solving DP queries

Suppose we are given the function $h_k : \mathbf{F}_k \to \mathcal{A}\mathbf{R}_k$ for all nodes in the co-design graph.

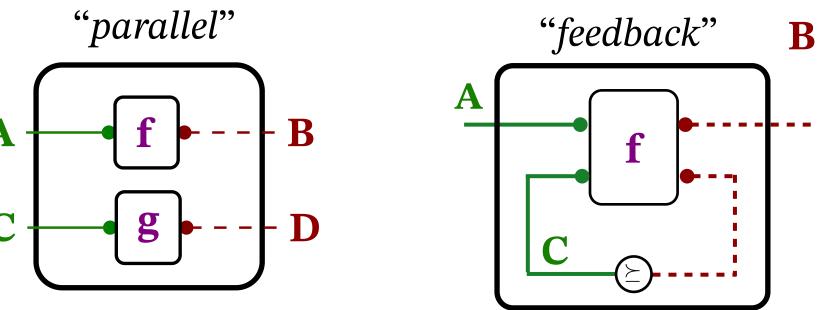


- Can we find the map $h: \mathbf{F} \to \mathcal{A}\mathbf{R}$ for the entire diagram?
- **Recursive approach:** We just need to work out the the composition formulas for all operations we have defined

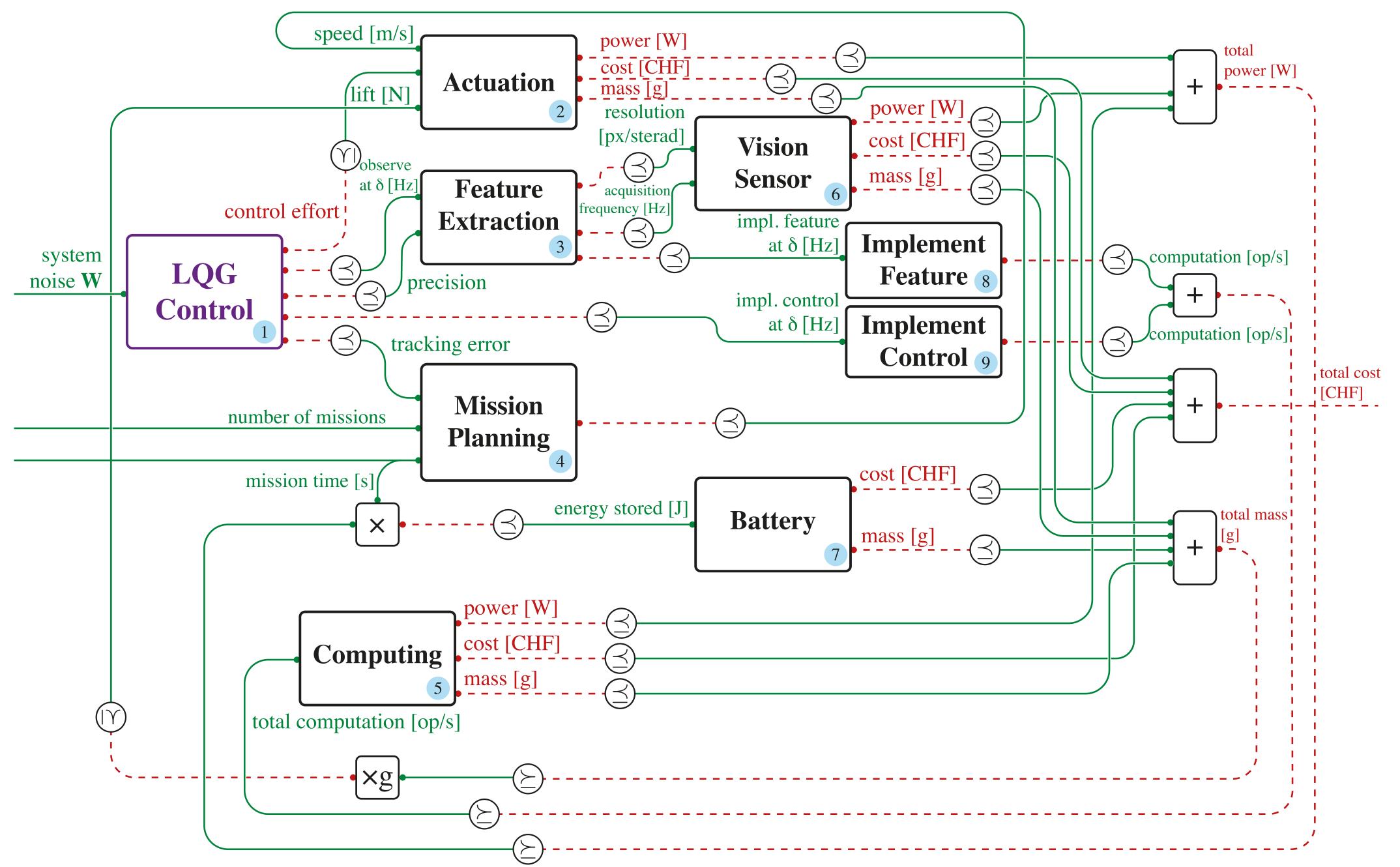
"series"

$$A + f + \cdots \leq g + \cdots \leq C$$

• The set of **minimal** feasible resources can be obtained as the **least fixed point** of a monotone function in the space of anti-chains.



Use case: Co-design of an autonomous drone



Infinite-horizon LQG control in one slide

• Let's consider the **continuous time**, **stochastic** dynamics

 $\mathrm{d}\mathbf{v}_t = \mathbf{C}\mathbf{x}_t\mathrm{d}t + \mathbf{G}\mathrm{d}\mathbf{v}_t,$

where A, B, C, D, E, G are of adequate dimensions, v_t and w_t Brownian processes, and $W = EE^*$, $V = GG^*$ noise covariances

• We consider the classic **infinite-horizon LQG problem**, finding a control law minimizing the cost $J = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left\{ \int_{0}^{T} \left(\left(\mathbf{x}_{t}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{t} \right) + \left(\mathbf{u}_{t}^{\mathsf{T}} \mathbf{R} \mathbf{u}_{t} \right) \right) \mathrm{d}t \right\}$

where **Q** is a positive semi-definite matrix and **R** is a positive definite matrix

• Well-known lemma: the optimal control law for the problem is

where $\hat{\mathbf{x}}_t$ is the unbiased minimum-variance estimate of \mathbf{x}_t , and $\bar{\mathbf{S}}$ solves the Riccati equation $\mathbf{SA} + \mathbf{A}^*\mathbf{S} - \mathbf{SBR}^{-1}\mathbf{B}^*\mathbf{S} + \mathbf{Q} = \mathbf{0}$.

• We can obtain the **optimal cost**

where $\bar{\Sigma}$ solves the Riccati equation $A\Sigma + \Sigma A^* - \Sigma C^* V^{-1} C\Sigma + W = 0$.

 $d\mathbf{x}_t = \mathbf{A}\mathbf{x}_t dt + \mathbf{B}\mathbf{u}_t dt + \mathbf{E}d\mathbf{w}_t$

 $\mathbf{u}_t^{\star} = -\mathbf{K}\hat{\mathbf{x}}_t = -\mathbf{R}^{-1}\mathbf{B}^*\bar{\mathbf{S}}\hat{\mathbf{x}}_t$

 $J^{\star} = \operatorname{Tr}(\bar{\mathbf{S}}\bar{\boldsymbol{\Sigma}}\mathbf{C}^{*}\mathbf{V}^{-1}\mathbf{C}\bar{\boldsymbol{\Sigma}} + \bar{\boldsymbol{\Sigma}}\mathbf{O})$ $= \operatorname{Tr}(\bar{\boldsymbol{\Sigma}}\bar{\boldsymbol{S}}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^*\bar{\boldsymbol{S}} + \bar{\boldsymbol{S}}\boldsymbol{W}),$

LQG control as a co-design problem

• Let's consider the **performance** metrics

$$P_{\text{track}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{x}_t^{\mathsf{T}} \mathbf{Q} \mathbf{x}_t\}$$

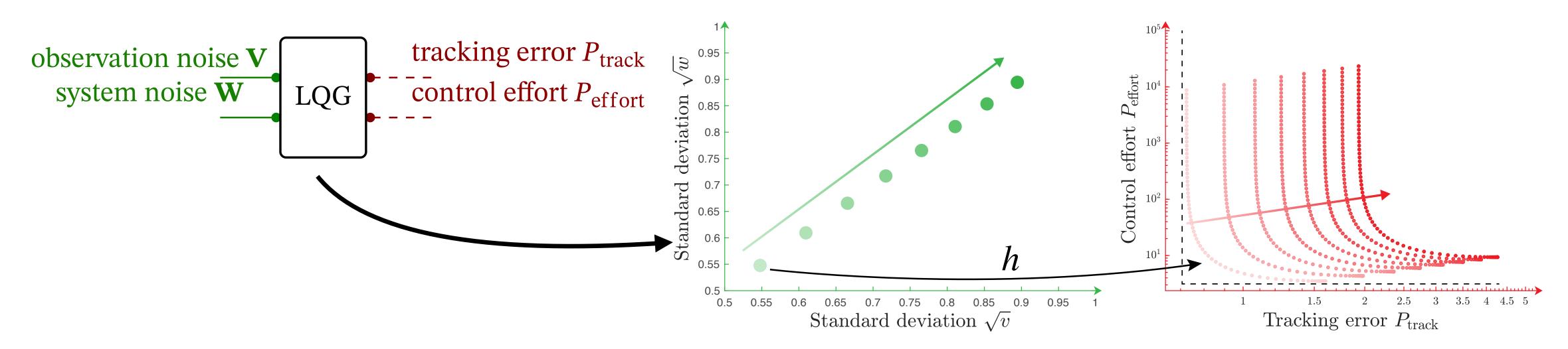
$$P_{\text{effort}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{u}_t^\mathsf{T} \mathbf{R} \mathbf{u}_t\}$$

LQG control as a co-design problem

• Let's consider the **performance** metrics

$$P_{\text{track}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{x}_t^{\mathsf{T}} \mathbf{Q} \mathbf{x}_t\}$$

Theorem: We can write the **LQG** problem as a design problem of the form:



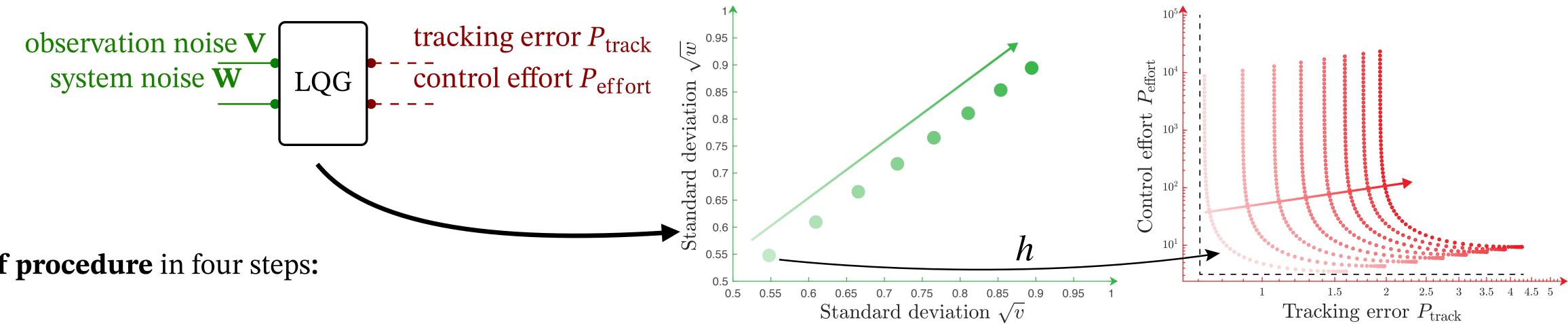
$$P_{\text{effort}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{u}_t^\mathsf{T} \mathbf{R} \mathbf{u}_t\}$$

LQG control as a co-design problem

• Let's consider the **performance** metrics

$$P_{\text{track}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{x}_t^{\mathsf{T}} \mathbf{Q} \mathbf{x}_t\}$$

Theorem: We can write the **LQG** problem as a design problem of the form:



- Proof procedure in four steps:
 - Show that one can *rewrite* the performance metrics as

 $\lim_{t\to\infty} \mathbb{E}\{\mathbf{x}_t^{\mathsf{T}} \mathbf{Q}_0 \mathbf{x}_t\} = \mathrm{Tr}(\mathbf{Q}_0 (\mathbf{\Sigma}$

where **F** solves the Lyapunov equation $(\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{F} + \mathbf{F}(\mathbf{A} - \mathbf{B}\mathbf{K})^* + \mathbf{L}\mathbf{V}\mathbf{L}^* = \mathbf{0}$ and $\mathbf{L} = \mathbf{\Sigma}\mathbf{C}^*\mathbf{V}^{-1}$ Show **monotonicity** of **tracking error** and **control effort** performances with respect to **Q** and **R**

- Show $\langle \mathbf{V}, \mathbf{W} \rangle \leq \langle \mathbf{V}', \mathbf{W}' \rangle \Rightarrow \Sigma(\mathbf{V}, \mathbf{W}) \leq \Sigma(\mathbf{V}', \mathbf{W}')$
- Show **monotonicity** of **tracking** and **effort** with respect to **V** and **W**

$$P_{\text{effort}} = \lim_{t \to \infty} \mathbb{E}\{\mathbf{u}_t^{\mathsf{T}} \mathbf{R} \mathbf{u}_t\}$$

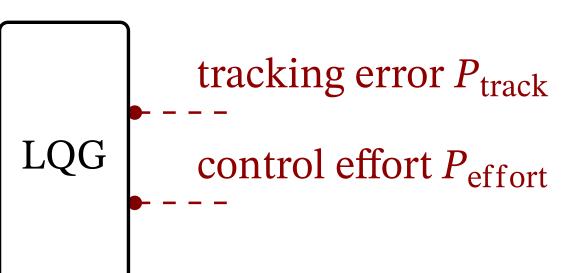
$$\mathbf{L} + \mathbf{F})) \quad \lim_{t \to \infty} \mathbb{E}\{\mathbf{u}_t^{\mathsf{T}} \mathbf{R}_0 \mathbf{u}_t\} = \mathrm{Tr}(\mathbf{S} \mathbf{B}^* \mathbf{R}^{-1} \mathbf{R}_0 \mathbf{R}^{-1} \mathbf{B} \mathbf{S} \mathbf{F}),$$

LQG control with delays and the discrete version

Theorem: For the LQG problem with **observation** and **computation delays** we can write the design problem:

observation noise V system noise W delay

Proof sketch:



- Substitution principle: If in the case a certain nuisance is "lower", the controller could simulate a "higher" nuisance

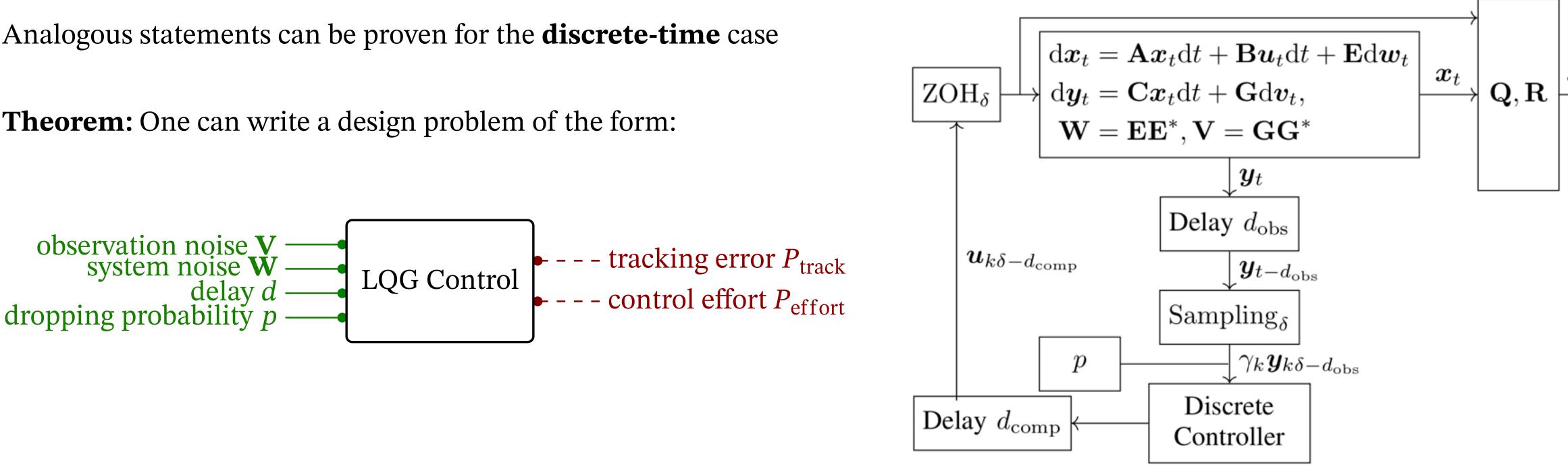
LQG control with delays and the discrete version

Theorem: For the LQG problem with **observation** and **computation delays** we can write the design problem:

observation noise V system noise W delay

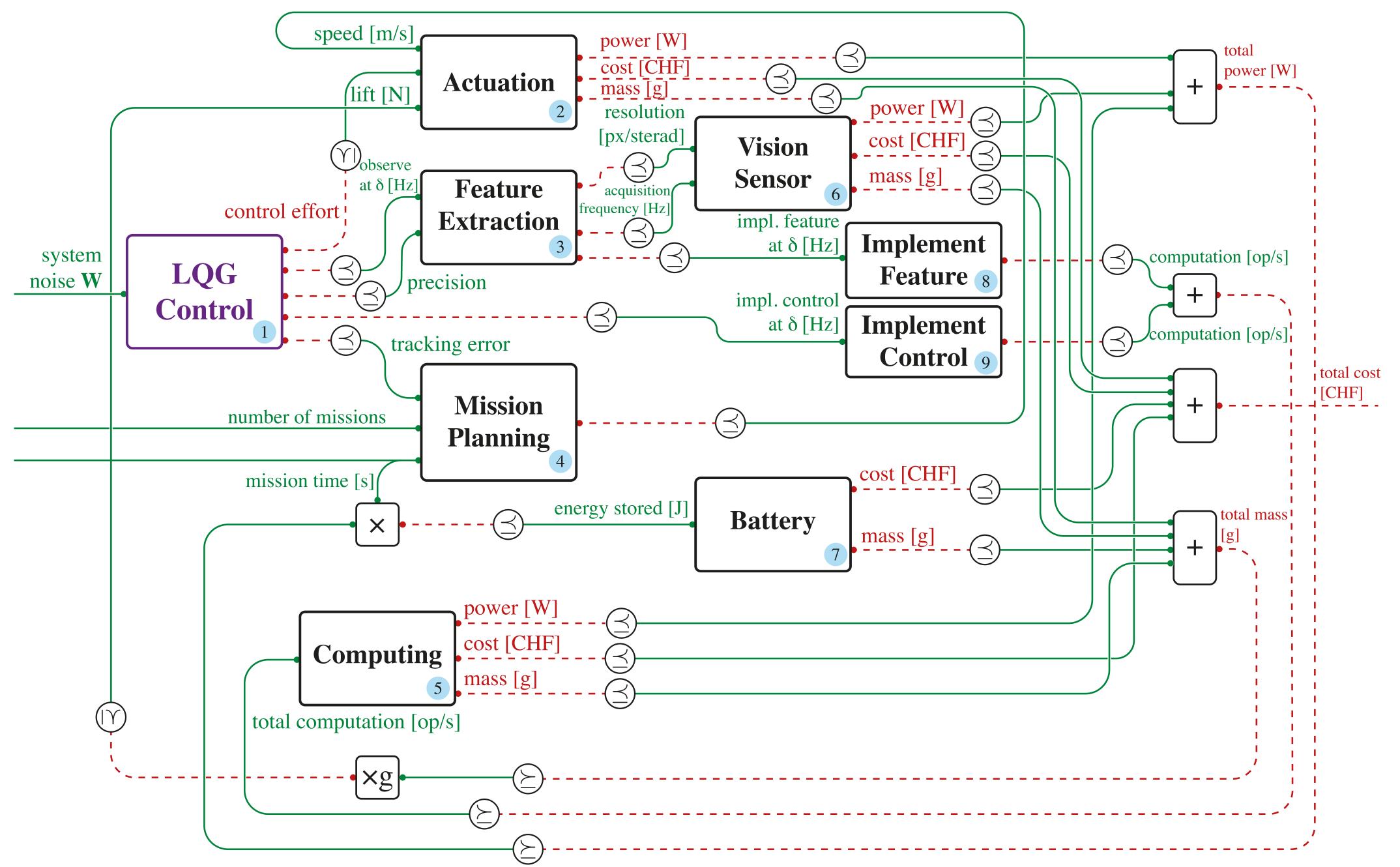
Proof sketch:

- Analogous statements can be proven for the **discrete-time** case
- **Theorem:** One can write a design problem of the form:

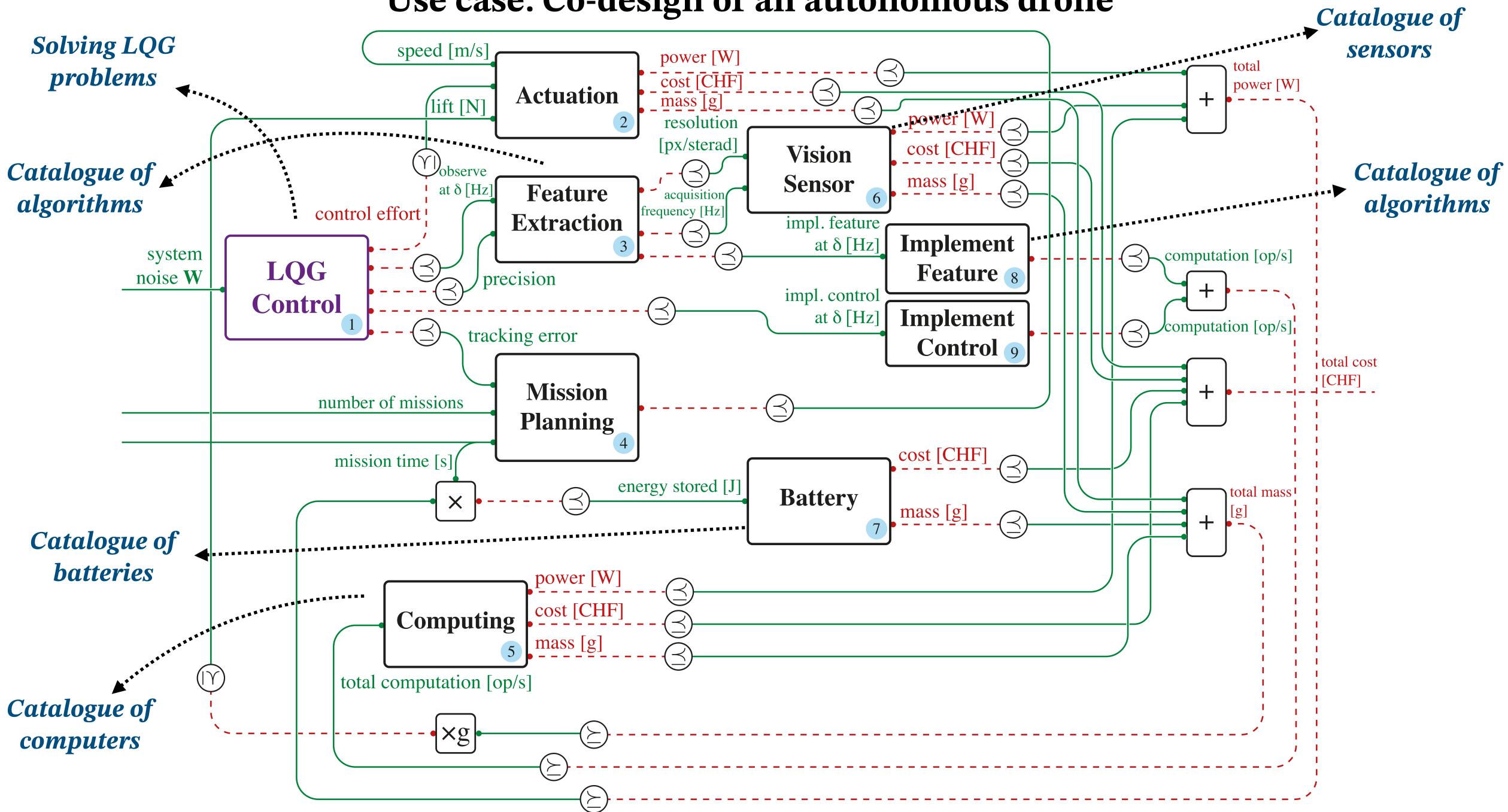


- Substitution principle: If in the case a certain nuisance is "lower", the controller could simulate a "higher" nuisance

Use case: Co-design of an autonomous drone

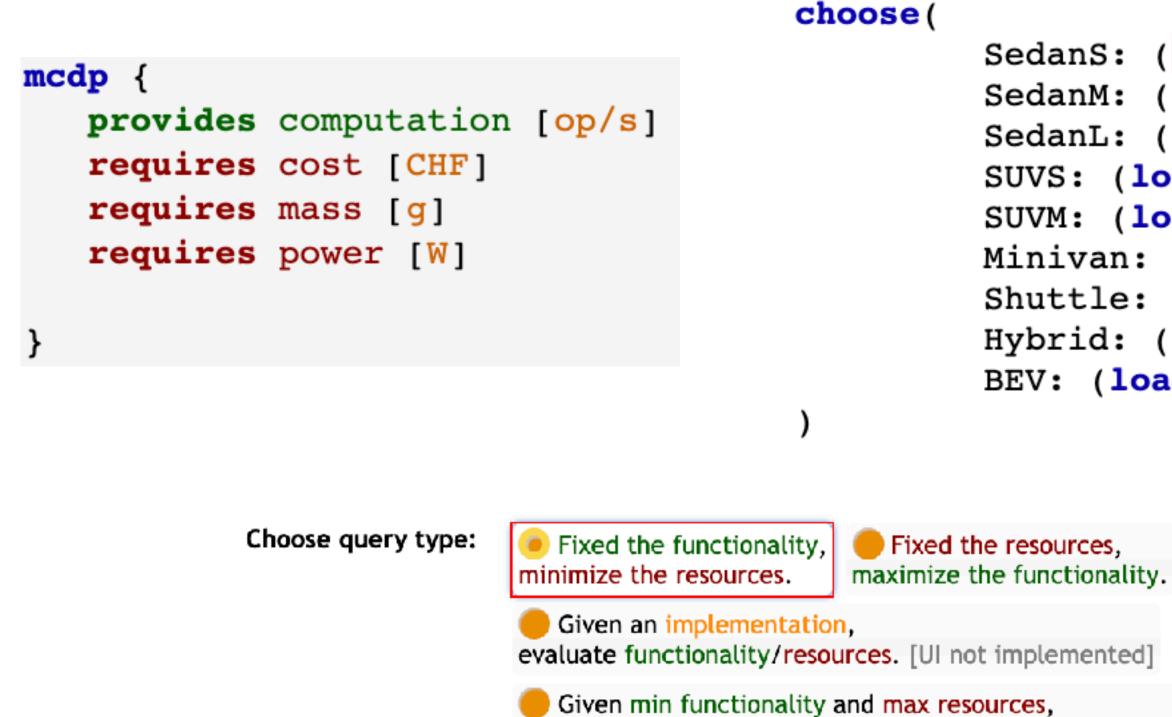


Use case: Co-design of an autonomous drone



Co-design is very intuitive!

- > The theory comes with a **formal language** and a **solver (MCDP)**
- Very intuitive to use:



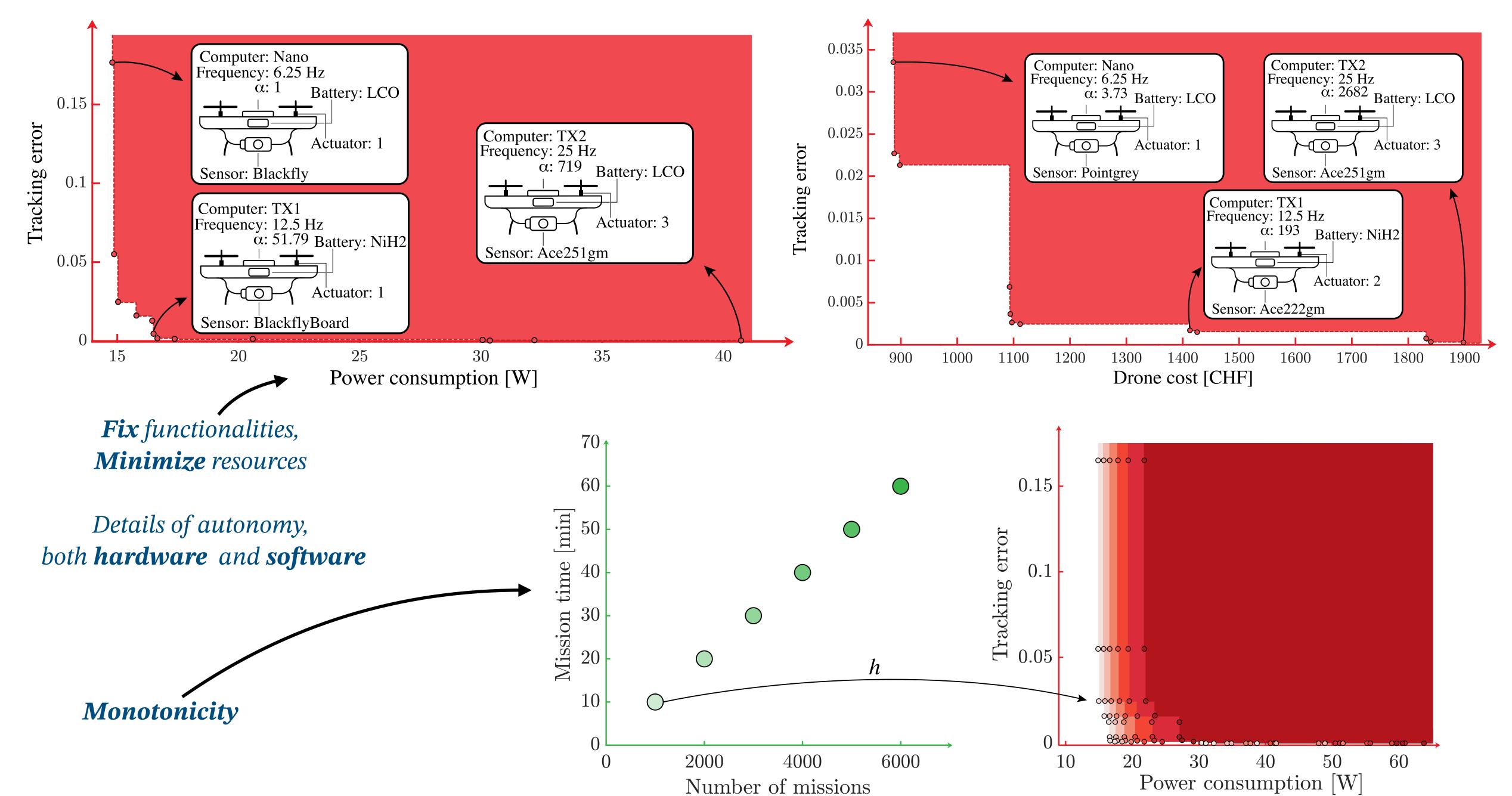
determine if there is a feasible implementation. [UI not implemented]

Given min functionality and max resources, find a feasible implementation. [UI not implemented]

"Solve for X": find the minimal component that makes the co-design problem feasible. [UI not implemented]

```
SedanS: (load Car_SedanS),
SedanM: (load Car_SedanM),
SedanL: (load Car_SedanL),
SUVS: (load Car SuvS),
SUVM: (load Car SuvM),
Minivan: (load Car Minivan),
Shuttle: (load Car Shuttle),
Hybrid: (load Car_Hybrid),
BEV: (load Car BEV)
```


Solution of DPs



- We have shown how to embed (variations of) LQG control problems into the co-design problem of an autonomous robot
- Very **intuitive** modeling approach (no acrobatics like common in optimization theory) The *interpreter* allows one to easily model problems of interest
- Rich modeling capabilities: **Simulation**: Algorithms' performances **Catalogues**: Sensors, vehicles, computers, algorithms, ... **Analytical**: LQG closed-form solutions, discomfort models, ...
- Compositionality and modularity allow interdisciplinarity We did all of it, but technically this could have been possible with different **teams**
- Co-design comes with a **formal language** and an **optimizer** After easily modeling the problem, you can directly solve **queries** of your choice
- Co-design produces actionable information for designers to reason about their problems We have shown actionable information for *municipalities*, as well as for *AV developers*

Takeaways

• Using co-design, it is easy to **embed** the synthesis of **controllers** into the co-design problem of the whole **autonomous robot**

Outlook and references

- Showcase **compositionality** by including the co-design of the **robot** in the co-design of **fleets of robots** (fleet control)
- Generalize this modeling approach to other **control structures** (nonlinear, receding horizon, ...)
- Exploit the framework to synthesize **energy** and **computation-aware** control strategies

References:

- This paper: Co-Design of Autonomous Systems: From Hardware Selection to Control Synthesis (https://bit.ly/3ixXa5g)
- Related work:

Co-Design of Embodied Intelligence: A Structured Approach (<u>https://bit.ly/3zq4dTN</u>) Co-Design to Enable User-Friendly tools to Assess the Impact of Future Mobility Solutions (<u>https://bit.ly/35a5Wyx</u>)

This is a **new** topic, we are making an effort in **evangelization**: We are writing a **book**, teaching **classes**, both at ETH and internationally, and organizing **workshops**

https://applied-compositional-thinking.engineering https://idsc.ethz.ch/research-frazzoli/workshops/compositional-robotics

http://gioele.science