A Compositional Sheaf-Theoretic Framework for Event-Based Systems

Gioele Zardini*, David I. Spivak[†], Andrea Censi*, and Emilio Frazzoli*

*Institute for Dynamic Systems and Control (IDSC) Department of Mechanical and Process Engineering, ETH Zürich

> [†]Department of Mathematics Massachusetts Institute of Technology

> > 7th July, 2020

Motivation			Outlook
0000	00000	000000000	0

Engineering complex systems causes pain

	actuation	perception	hardware
	sensing	planning	localization
robot design $=$	control	learning	mapping
	energetics	interactions	coordination
	computation	software	calibration

Motivation			Outlook
0000	00000	000000000	0

Engineering complex systems causes pain

	actuation	perception	hardware
	sensing	planning	localization
robot design $=$	control	learning	mapping
	energetics	interactions	coordination
	computation	software	calibration

Engineering malaise:

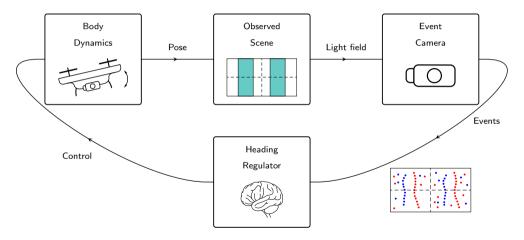
- Too many components, too different (continuous, discrete, event-based).
- Each component is modeled in a specific way: Engineers like to partition.
- Even if modeled differently, the components have to be co-designed at some point: Pain.

Event-Based Systems

An example: Event-Based Sensors

https://www.youtube.com/watch?v=kPCZESVfHoQ

How can we put together continuous time, event-based, discrete time?



Motivation			Outlook
0000	00000	000000000	0

Towards a solution: A common framework

	actuation	perception	hardware
	sensing	planning	localization
robot design $=$	control	learning	mapping
	energetics	interactions	coordination
	computation	software	calibration

- Components are different, but there is an abstraction level at which they are the same.
- These are *behavior types*, which can be *composed* in different ways.

Motivation			
0000	00000	000000000	0

Towards a solution: A common framework

	actuation	perception	hardware
	sensing	planning	localization
$robot \ design =$	control	learning	mapping
	energetics	interactions	coordination
	computation	software	calibration

- Components are different, but there is an abstraction level at which they are the same.
- These are *behavior types*, which can be *composed* in different ways.

Some references:

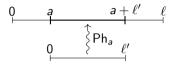
- Schultz, Spivak, Vasilakopoulou, Dynamical systems and sheaves, '20.
- Schultz, Spivak, Temporal Type Theory: A topos-theoretic approach to systems and behavior, '19.

	Background		
0000	●0000	000000000	0

Describing system behaviors: The category of continuous intervals

Given $a \in \mathbb{R}_{\geq 0}$, the translation-by-a function is

$$\mathsf{Ph}_a \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
$$\ell \mapsto a + \ell$$



Definition (Category of continuous intervals Int)

- Objects: Durations Ob(Int) := $\{\ell \in \mathbb{R}_{\geq 0}\}$.
- Morphisms: Given durations ℓ', ℓ , one has $Int(\ell', \ell) \coloneqq \{Ph_a \mid a \in \mathbb{R}_{\geq 0} \text{ and } a + \ell' \leq \ell\}.$
- Identity morphism: $id_{\ell} \coloneqq Ph_0 \in Int(\ell, \ell)$.
- Composition of morphisms: Given $Ph_a: \ell \to \ell'$, $Ph_b: \ell' \to \ell''$, one has

$$\mathsf{Ph}_a$$
 $\operatorname{Ph}_b = \mathsf{Ph}_{a+b} \in \mathsf{Int}(\ell, \ell'').$

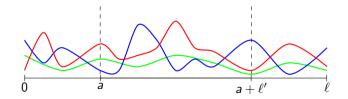
	Background		
0000	0000	000000000	0

Describing system behaviors: Int-presenaves and sections

Definition (Int-presheaves)

An Int-*presheaf* A is a functor A: $Int^{op} \rightarrow Set$.

- $x \in A(\ell)$ is a length- ℓ section (behavior).
- Given $x \in A(\ell)$, $Ph_a: \ell' \to \ell$, the restriction is $x|_{[a,a+\ell']} = A(Ph_a)(x) \in A(\ell')$.

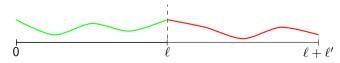


	Background		
0000	00000	000000000	0

Describing system behaviors: Compatible sections and Int-sheaves

Definition (Compatible sections)

Given a presheaf A, the sections $a \in A(\ell)$ and $a' \in A(\ell')$ are *compatible* if $a|_{[\ell,\ell]} = a'|_{[0,0]}$.



Describing system behaviors: Compatible sections and Int-sheaves

Definition (Compatible sections)

Given a presheaf A, the sections $a \in A(\ell)$ and $a' \in A(\ell')$ are *compatible* if $a|_{[\ell,\ell]} = a'|_{[0,0]}$.

Definition (Int-sheaf)

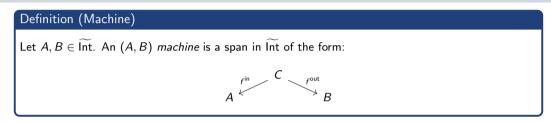
ETH zürich

An Int-presheaf A: Int^{op} \rightarrow Set is an Int-*sheaf* if, for all ℓ, ℓ' and compatible sections $a \in A(\ell)$, $a' \in A(\ell')$, there exists a unique $\bar{a} \in A(\ell + \ell')$ such that

$$ar{a}|_{[0,\ell]} = a$$
 and $ar{a}|_{[\ell,\ell+\ell']} = a'.$

We denote by Int the category of Int-sheaves.

Describing different components: Machines

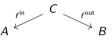


Motivation Background Event-Based Systems	
0000 00 000 00000000	0

Describing different components: Machines

Definition (Machine)

Let $A, B \in \widetilde{Int}$. An (A, B) machine is a span in \widetilde{Int} of the form:



Example (Continuous Dynamical System)

Consider A, B euclidean spaces. An (A, B)-continuous dynamical system consists of

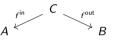
- State space: S.
- Dynamics: $\dot{s} = f^{dyn}(s, a)$, for $a \in A$, $s \in S$, and smooth f^{dyn} .
- Readout: $b = f^{rdt}(s)$, $b \in B$ and smooth f^{rdt} .

	Background		
0000	00000	000000000	0

Describing different components: Machines

Definition (Machine)

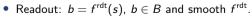
Let $A, B \in \widetilde{Int}$. An (A, B) machine is a span in \widetilde{Int} of the form:



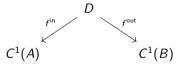
Example (Continuous Dynamical System)

Consider A, B euclidean spaces. An (A, B)-continuous dynamical system consists of

- State space: S.
- Dynamics: $\dot{s} = f^{dyn}(s, a)$, for $a \in A$, $s \in S$, and smooth f^{dyn} .



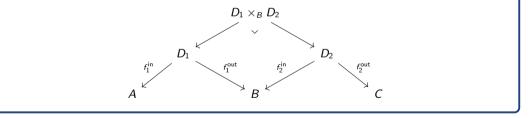
$$D(\ell) = \{(a, s, b) \in C^1(A) \times S \times C^1(B) \mid \dot{s} = f^{\mathsf{dyn}}(a, s), \ b = f^{\mathsf{rdt}}(s)\}$$



Composing components via machines composition

Definition (Composition of machines)

Given two machines $M_1 = (D_1, f_1^{\text{in}}, f_1^{\text{out}})$ and $M_2 = (D_2, f_2^{\text{in}}, f_2^{\text{out}})$ of types (A, B) and (B, C) respectively, their *composite* is the machine $M = (D_1 \times_B D_2, f^{\text{in}}, f^{\text{out}})$ of type (A, C), namely the span given by pullback:



A closer look to a particular behavior type: Event streams

Definition (Event stream)

Given a set A and $\ell \ge 0$. A length- ℓ event stream of type A is an element of

$$\mathsf{Ev}_{\mathsf{A}}(\ell) := \{(S, a) \mid S \subseteq \tilde{\ell}, S \text{ finite}, a \colon S \to \mathsf{A}\}.$$

Example (Swiss traffic light)

 $(S,a) \in \mathsf{Ev}_A(60), \ S = \{20,25,45,50\}$

 $\textit{a: } \textit{S} \rightarrow \textit{A} = \{ \texttt{redToOrange}, \texttt{orangeToGreen}, \texttt{greenToOrange}, \texttt{orangeToRed} \}$

$$s \mapsto \begin{cases} \text{redToOrange}, & \text{if } s = 20, \\ \text{orangeToGreen}, & \text{if } s = 25, \\ \text{greenToOrange}, & \text{if } s = 45, \\ \text{orangeToRed}, & \text{if } s = 50. \end{cases}$$

		Event-Based Systems	
0000	00000	000000000	0

Facts about event streams

Proposition (Ev is functorial)

Ev is functorial: Given a map $f: A \to B$, there is an induced morphism $Ev_f: Ev_A \to Ev_B$ in Int, preserving identities and composition.

Proposition (Ev_A is a sheaf)

For any set A, Ev_A is an Int-sheaf.

Proposition (Ev is a strong monoidal functor)

 $\textit{Ev}\colon (\mathsf{Set},\odot,\varnothing)\to (\widetilde{\mathsf{Int}},\times,1)$ is a strong monoidal functor, i.e.

$$1 \cong Ev_{\varnothing}$$
 and $Ev_A \times Ev_B \cong Ev_{A \odot B}$,

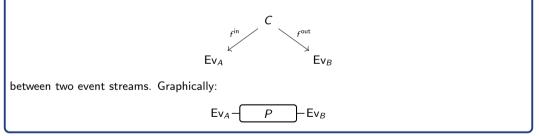
where $A \odot B \coloneqq A + B + A \times B$.

	Event-Based Systems ○○●○○○○○○○	

We are ready to define event-based systems: A particular type of machines

Definition (Event-based system)

Let A, B be sets. An event-based system $P = (C, f^{in}, f^{out})$ of type (A, B) is a machine



		Event-Based Systems	Outlook
0000	00000	000000000	0

Discrete dynamical systems as an example of event-based systems

Example (Discrete Dynamical Systems (DDS))

Let A, B be sets. An (A, B)-DDS consists of:

- State space S.
- Update function: $f^{upd}: A \times S \rightarrow S$.
- Readout function $f^{\text{rdt}} \colon S \to B$.

Discrete dynamical systems as an example of event-based systems

Example (Discrete Dynamical Systems (DDS))

Let A, B be sets. An (A, B)-DDS consists of:

- State space S.
- Update function: $f^{upd}: A \times S \rightarrow S$.
- Readout function $f^{\text{rdt}} \colon S \to B$.

This is an (A, B)-event-based system with

$$D(\ell) \coloneqq \{T \subseteq \tilde{\ell}, (a, s) \colon T \to A \times S \mid T \text{ finite and } s_{i+1} = f^{\mathsf{upd}}(a_i, s_i) \text{ for all } 1 \leq i \leq n-1\}.$$

Given $(T, a, s) \in D(\ell)$:

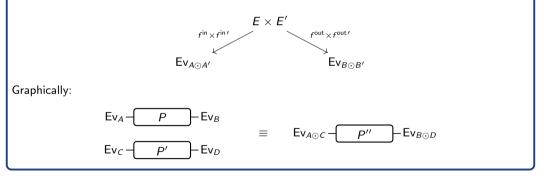
$$egin{aligned} &f^{ ext{in}}(\mathcal{T}, \mathsf{a}, \mathsf{s}) = (\mathcal{T}, \mathsf{a}), \ &f^{ ext{out}}(\mathcal{T}, \mathsf{a}, \mathsf{s}) = (\mathcal{T}, (\mathsf{s} \circ \mathcal{f}^{ ext{rdt}})) \end{aligned}$$

		Event-Based Systems	
0000	00000	000000000	0

Tensor product of event-based systems

Definition (Tensor product of event-based systems)

Given two event-based systems $P(E, f^{\text{in}}, f^{\text{out}})$, $P'(E', f^{\text{in'}}, f^{\text{out'}})$, of types (A, B) and (A', B'), their tensor product is of type $(A \odot A', B \odot B')$ and is given by:



		Event-Based Systems	
0000	00000	000000000	0

Trace of event-based systems

Definition (Trace of event-based systems)

Given an event based system $P(D, f^{\text{in}}, f^{\text{out}})$ of type $(A \times C, B \times C)$, its trace is an event-based system $P(E, f^{\text{in}}_{\text{tr}}, f^{\text{out}}_{\text{tr}})$ of type (A, B), with

$$egin{aligned} E(\ell) &= \{ d \in D(\ell) \mid \pi_2(f^{\mathsf{in}}(d)) = \pi_2(f^{\mathsf{out}}(d)) \ f^{\mathsf{in}}_{\mathsf{tr}}(d) &= \pi_1(f^{\mathsf{in}}(d)) \in \mathsf{Ev}_A \ f^{\mathsf{out}}_{\mathsf{tr}}(d) &= \pi_1(f^{\mathsf{out}}(d)) \in \mathsf{Ev}_B. \end{aligned}$$

Graphically:

Yes, but what if I have to model continuous signals? Continuous streams

Definition (Continuous stream)

Given a topological space A, we can define the sheaf of *continuous streams* of type A as

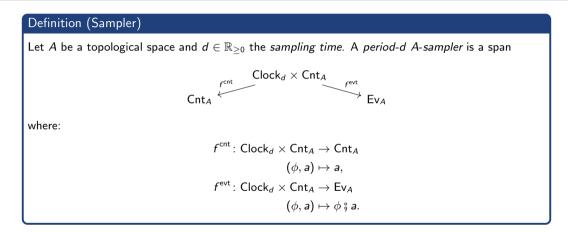
$$\mathsf{Cnt}_{\mathcal{A}}(\ell)\coloneqq \{a\mid a\colon \widetilde{\ell}\to A \text{ continuous}\}.$$

Lipschitz continuous streams are given by the sheaf:

 $\mathsf{LCnt}_{\mathcal{A}}(\ell) = \{a \colon \tilde{\ell} \to \mathcal{A} \mid a \text{ Lipschitz continuous}\} \subseteq \mathsf{Cnt}_{\mathcal{A}}(\ell).$

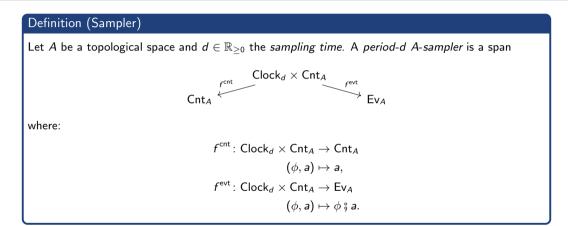
		Event-Based Systems	Outlook
0000	00000	0000000000	0

How to go from continuous to discrete? A sampler



		Event-Based Systems	Outlook
0000	00000	0000000000	0

How to go from continuous to discrete? A sampler

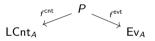


... but does this capture all engineering applications?

Solution: A level crossing sampler

Definition (L-level-crossing sampler)

Let (A, dist) be a metric space and consider a Lipschitz input stream $\text{LCnt}_A(\ell)$. Consider the *level* $L \in \mathbb{R}$. A *L-level-crossing sampler* of type A is a span with $P(\ell) := \{(c, a_0) \mid c \in \text{LCnt}_A(\ell), a_0 \in A\}$:

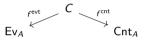


• $f^{cnt}(c, a_0) = c$.

- If dist $(c(t), a_0) < L$ for all $t \in \tilde{\ell}$: $f^{\text{evt}}(c) = (\emptyset, !)$.
- If there exists $t \in \tilde{\ell}$ with $dist(c(t_1), a_0) \ge L$: $t_1 = inf\{t \in \tilde{\ell} \mid dist(c(t_1), a_0) \ge L\}$, $a_1 = c(t_1)$.
- Recursively, define $t_{i+1} \in \tilde{\ell}$ to be the least time such that $dist(c(t_{i+1}), a_i) \ge L$ (if there is one).
- $f^{\text{evt}} \colon P(\ell) \to \mathsf{Ev}_A, \quad (c, a_0) \mapsto \{t_1, \ldots, t_n, c(t_1), \ldots, c(t_n)\}$

How to go from discrete to continuous? A reconstructor

Definition (Reconstructor)



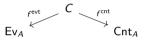
with

$$C(\ell) = \{(S, a_0, a) \mid S \subseteq \tilde{\ell} \text{ finite, } a_0 \in A, a: S \to A\},$$

where $f^{\text{evt}}(S, a_0, a) \coloneqq (S, a)$, and where $a' \coloneqq f^{\text{cnt}}(a_0, s_1, \dots, s_n, a_1, \dots, a_n) \colon \tilde{\ell} \to A$ is given by
 $a'(t) \coloneqq \begin{cases} a_0, & 0 \le t < s_1 \\ a(s_i), & s_i \le t < s_{i+1}, & i \in \{2, \dots, n-1\} \\ a(s_n), & s_n \le t \le \ell. \end{cases}$

How to go from discrete to continuous? A reconstructor

Definition (Reconstructor)



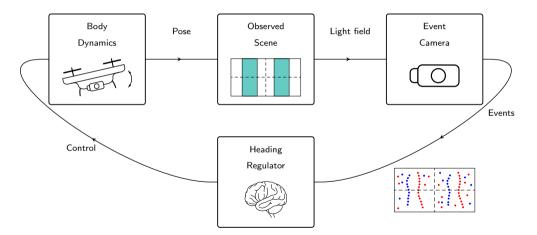
with

$$C(\ell) = \{(S, a_0, a) \mid S \subseteq \tilde{\ell} \text{ finite, } a_0 \in A, a: S \to A\},\$$

where $f^{\text{evt}}(S, a_0, a) \coloneqq (S, a)$, and where $a' \coloneqq f^{\text{cnt}}(a_0, s_1, \dots, s_n, a_1, \dots, a_n) \colon \tilde{\ell} \to A$ is given by
 $a'(t) \coloneqq \begin{cases} a_0, & 0 \le t < s_1 \\ a(s_i), & s_i \le t < s_{i+1}, & i \in \{2, \dots, n-1\} \\ a(s_n), & s_n \le t \le \ell. \end{cases}$

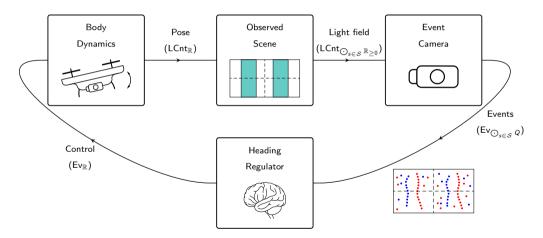
	Event-Based Systems	
	000000000	

Neuromorphic heading regulation problem within a unified framework



	Event-Based Systems	
	000000000	

Neuromorphic heading regulation problem within a unified framework



Motivation 0000		Outlook •
Outlook		

In engineering, we need to understand many different components in the same system.

- We developed a framework which allows putting together different components (events, clocks, continuous-time).
- This framework is *descriptive*.

Motivation	Background	Event-Based Systems	Outlook
0000	00000	0000000000	•
Outlook			

In engineering, we need to understand many different components in the same system.

- We developed a framework which allows putting together different components (events, clocks, continuous-time).
- This framework is *descriptive*.

We now want to work on the synthesis of such components:

• The theory of *co-design* allows design across field boundaries.