Towards a Co-Design Framework for Future Mobility Systems

Gioele Zardini^{1,2} Andrea Censi² Emilio Frazzoli ² Marco Pavone¹

¹Autonomous Systems Lab (ASL) Stanford University

²Institute for Dynamic Systems and Control (IDSC) ETH Zürich

6th September, 2019

Introduction ●O		

Motivation

Data from: Allied Market Research, Aptiv 2018 Report, McKinsey & Company.

Introduction ○●		
Motivation		

The design of AVs and the design of AVs-enabled mobility systems are closely coupled.

Scope

We develop a **co-design** framework to solve the problem of *designing* and *deploying* an intermodal Autonomous Mobility-on-Demand system, optimizing for

- its performance,
- the costs it produces, and
- its environmental footprint.

Problem Setting		
000		

Problem Setting – What Do We Want To Co-Design?

Autonomous Vehicles

- The vehicle autonomy.
- The AVs fleet size.

Public Transportation

• The public transit service frequency.

Public Roads

• The parking space allocation.

	Problem Setting ○●○		Conclusions O
Literature	Roview		

LITEIATOR VENER

ASĽ ()

Stanford University

oD Systems	AMoD Systems Design	Urban Parking for AVs
stems for future urban mobility	Solving a multi periodic stochastic model of the rail-car fleet sizing by two stage optimization formulation	Parking spaces in the age of shar autonomous vehicles
 No flexible toolb 	of AVs and AVs-enabled mo poxes.	Joiney Systems.
• Not directly use	ful for stakeholders.	
Not directly use	ful for stakeholders. networks and shared autonomous mobility fleets [Pinto et al., 2019]	Not connected with the AVs-

	Problem Setting	Methodology 00000000000	
Literature	Review		

We need a framework that allows to structure the design problem in a **modular** and **compositional** way.

Co-Design

A mathematical theory of Co-Design [Censi, 2015]

Monotone Co-Design problems; or, everything is the same [Censi, 2016]

A class of Co-Design problems with cyclic constraints and their solution [Censi, 2017]

Offers a mathematical formalization of Co-Design problems

Provides modularity and compositionality

	Methodology ●00000000000	
Co-Design		

Abstraction of a Design Problem

A Design Problem (DP) is abstracted as a monotone map h between provided functionalities and the *antichain* of requires resources (posets $\langle \mathcal{F}, \preceq_{\mathcal{F}} \rangle$ and $\langle \mathcal{R}, \preceq_{\mathcal{R}} \rangle$).

Abstraction of a Co-Design Problem

A Co-Design Problem (CDP) is abstracted as an interconnection of individual DPs.

Co-Design Goal

Find the antichain of all *rational* resources $r_1, \ldots, r_N \in \mathcal{R}$ which provide a given functionality $f \in \mathcal{F}$.

	Methodology	
	0000000000	

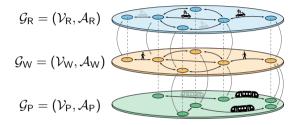
Modeling – Network Flow Model for Intermodal AMoD

Assumptions

- Network flow approach
- Time-invariant model.

Mesoscopic System-level planning

perspective



Graph

 $\begin{array}{l} \mbox{Mode-switching arcs:} \ \mathcal{A}_{C} \subseteq \mathcal{V}_{R} \times \mathcal{V}_{W} \cup \mathcal{V}_{W} \times \mathcal{V}_{R} \cup \mathcal{V}_{P} \times \mathcal{V}_{W} \cup \mathcal{V}_{W} \times \mathcal{V}_{P}. \\ \mbox{Extended graph:} \ \mathcal{A} = \mathcal{A}_{W} \cup \mathcal{A}_{R} \cup \mathcal{A}_{P} \cup \mathcal{A}_{C}, \ \mathcal{V} = \mathcal{V}_{R} \times \mathcal{V}_{W} \times \mathcal{V}_{P}. \end{array}$

	Methodology	
	0000000000	
		1

Modeling – Network Flow Model for Intermodal AMoD

Travel Requests

Assume *M* travel requests
$$\rho_m = (o_m, d_m, \alpha_m) \in \mathcal{V}_W \times \mathcal{V}_W \times \mathbb{R}_+, \ \forall m \in \{1, \dots, M\}.$$

Constraints

ASť

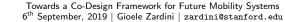
Stanford

$$\sum_{i:(i,j)\in\mathcal{A}} f_m(i,j) + \mathbb{I}_{j=o_m} \cdot \alpha_m = \sum_{k:(j,k)\in\mathcal{A}} f_m(j,k) + \mathbb{I}_{j=d_m} \cdot \alpha_m, \quad \forall m \in \mathcal{M}, j \in \mathcal{V}$$

$$\sum_{i:(i,j)\in\mathcal{A}_{\mathsf{R}}} \left(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right) = \sum_{k:(j,k)\in\mathcal{A}_{\mathsf{R}}} \left(f_0(j,k) + \sum_{m\in\mathcal{M}} f_m(j,k) \right), \quad \forall j \in \mathcal{V}_{\mathsf{R}}$$

$$f_m(i,j) \ge 0, \quad \forall m \in \mathcal{M}, (i,j) \in \mathcal{A}$$

$$f_0(i,j) \ge 0, \quad \forall (i,j) \in \mathcal{A}_{\mathsf{R}}.$$



	Methodology	
	00000000000	

Modeling – Travel Time and Speed

Road

- Each $(i,j) \in \mathcal{A}_{\mathsf{R}}$ has a speed limit $v_{\mathsf{L},ij}$.
- AVs safety protocols impose a maximum achievable speed v_a .
- Too slow AVs are dangerous: (i, j) is kept in \mathcal{A}_{R} iff $v_{\mathsf{a}} \geq \beta \cdot v_{\mathsf{L}, ij}, \quad \beta \in (0, 1].$
- Then, $v_{ij} = \min\{v_a, v_{L,ij}\}$.

Pedestrians

Constant walking speed v_{ij} for each $(i,j) \in \mathcal{A}_W$.

Public Transportation System

- The public transit system at node j operates with frequency φ_j .
- Switching from j to a pedestrian vertex i takes t_{WP} : $t_{ij} = t_{WP} + \frac{1}{\varphi_i} \forall (i,j) \in \mathcal{A}_P$.

	Methodology	
	0000000000	

Modeling – Properties

Energy Consumption

AVs:

• Urban driving cycle.

•
$$e_{ij} = e_{ ext{cycle}} \cdot rac{s_{ij}}{s_{ ext{cycle}}} \; orall(i,j) \in \mathcal{A}_{\mathsf{R}}$$

Public Transportation:

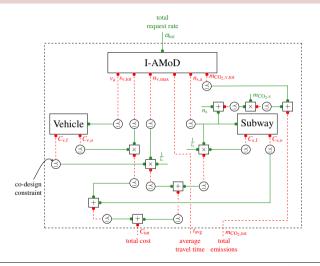
- Assumption: Customers-independent operation.
- Constant energy consumption per unit time.

AVs Fleet Size

$$n_{\mathsf{v},\mathsf{e}} = \sum_{(i,j)\in\mathcal{A}_{\mathsf{R}}} \left(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right) \cdot t_{ij} \leq n_{\mathsf{v},\mathsf{max}}.$$

	Methodology	
	00000000000	

Co-Design - The Monotone Co-Design Problem



		Methodology ○○○○○○●○○○○○	
Co-Design	– AVs		

AVs Design Problem

We design the maximal achievable speed v_{a} .

Functionality:

- Maximal achievable speed v_a.
- $\mathcal{F}_{v} = \overline{\mathbb{R}}_{+}$ (in mph).

Resources:

- Vehicle fixed costs $C_{v,f} = C_{v,v} + C_{v,a}$.
- Vehicle operational costs $C_{v,o}$.
- $\mathcal{R}_{v} = \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+}$ (in USD \times ^{USD}/mile)

Functionality/Resources Relation

- Higher speed, more advanced technology.
- v_a as monotone function of costs.

	Methodology	
	00000000000	

Co-Design – Public Transportation System

Subway Design Problem

We design the service frequency φ_i , assuming

φ_j _ n_s φ_{i} .baseline

n_{s.baseline}

Functionality:

- Acquired trains $n_{s,a} = n_s n_{s,baseline}$.
- $\mathcal{F}_{s} = \overline{\mathbb{N}}.$

Resources:

- Train fleet fixed costs C_{sf} .
- Train fleet operational costs $C_{s,o}$.
- $\mathcal{R}_{s} = \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+}$ (in USD $\times \frac{\text{USD}}{\text{vear}}$).

Functionality/Resources Relation

- More trains, higher fixed costs.
- More trains require more operators: higher operational costs.

	Methodology	
	000000000000	

Co-Design – I-AMoD Optimization Framework

I-AMoD Optimization Framework Design Problem

Functionality:

• Demand satisfaction:

 $\alpha_{\text{tot}} \coloneqq \sum_{m \in \mathcal{M}} \alpha_m.$ • $\mathcal{F}_{o} = \overline{\mathbb{R}}_+.$

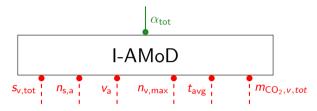
Resources:

- Maximal achievable speed v_a .
- Available AVs per fleet $n_{y,max}$.
- Acquired trains $n_{s,a}$.

- Average travel time per trip: $\mathbf{t}_{\text{avg}} := \frac{1}{\alpha_{\text{tot}}} \sum_{m \in \mathcal{M}, (i,j) \in \mathcal{A}} \mathbf{t}_{ij} \cdot f_m(i,j),$
- Total AVs-driven distance: $\mathbf{s}_{\mathbf{v},\mathsf{tot}} \coloneqq \sum_{(i,j)\in\mathcal{A}_{\mathsf{P}}} \mathbf{s}_{ij} \cdot \Big(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \Big).$
- AVs emissions: $m_{\text{CO}_2,\mathbf{v},\text{tot}} \coloneqq \gamma \sum_{(i,i) \in \mathcal{A}_{\mathcal{P}}} e_{ij} \cdot \left(f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \right).$ • $\mathcal{R}_{\mathbf{o}} = \overline{\mathbb{R}}_{+} \times \overline{\mathbb{N}} \times \overline{\mathbb{N}} \times \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+}$

	Methodology	
	00000000000	

Co-Design – I-AMoD Optimization Framework



Functionality/Resources Relation

$$\min_{\{f_m(\cdot,\cdot)\}_m, f_0(\cdot,\cdot)} t_{\text{avg}} = \frac{1}{\alpha_{\text{tot}}} \sum_{m \in \mathcal{M}, (i,j) \in \mathcal{A}} t_{ij} \cdot f_m(i,j), \quad \text{ s.t. } (1), (2), (3)$$

- (1): Flows conservation and non-negativity.
- (2): Road congestion.
- (3): Fleet limitations.

Stanford

		Methodology		
00	000	00000000000	00000000	0

Co-Design – The Monotone Co-Design Problem

Full Co-Design Problem

Functionality:

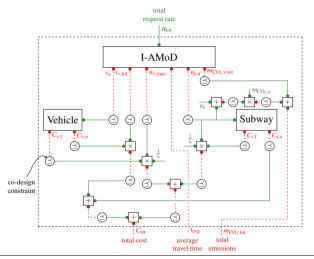
- Demand satisfaction α_{tot}
- $\mathcal{F} = \overline{\mathbb{R}}_+$.

Resources:

- Total costs $C_{tot} = C_v + C_s$, with
 - $C_{v} = \frac{C_{v,f}}{l_{v}} \cdot n_{v} + C_{v,o} \cdot s_{v,tot}.$ $C_{s} = \frac{C_{s,f}}{l_{v}} \cdot n_{s,a} + C_{s,o}.$
- Average travel time per trip *t*_{avg}.
- Total emissions: $m_{CO_2,tot} = m_{CO_2,v,tot} + m_{CO_2,s} \cdot n_s$
- $\mathcal{R} = \overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$

	Methodology	
	0000000000	

Co-Design – The Monotone Co-Design Problem



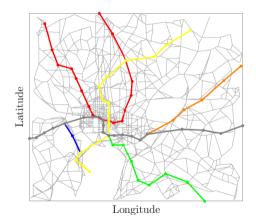
	Results	
	0000000	

Case Study – Washington DC, USA

Dataset Construction

Road network: OpenStreetMap. Public Transit network: GTFS. Origin-destination pairs: WMATA. Demand: 15,872 travel requests \rightarrow 24.22 requests/s

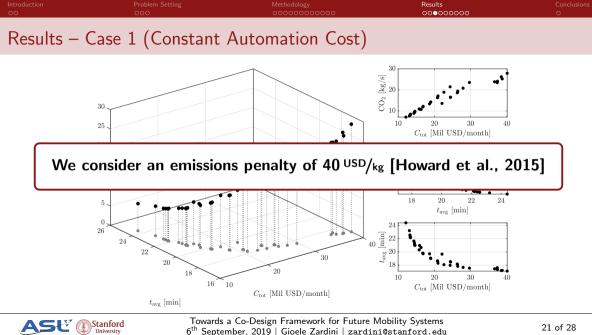
Co-Design



			Results	
00	000	00000000000	0000000	0

Case Study – Parameters and Units for Sensitivity

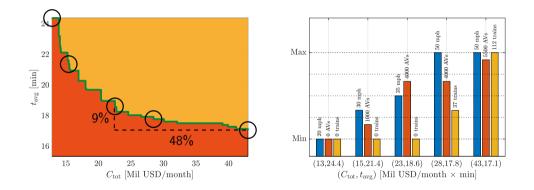
Parameter Baseline road usage		Variable u _{ij}			Value 93			Units %
			Case 1	Case 2.1	Case 2.2	Case 3.1	Case 3.2	
Vehicle operational cost		$C_{\rm v,o}$	0.084	0.084	0.062	0.084	0.084	USD/mile
Vehicle cost		$C_{\rm v,v}$	32,000	32,000	26,000	32,000	32,000	USD/car
	20 mph		15,000	20,000	3,700	0	500,000	USD/ _{car}
	25 mph		15,000	30,000	4,400	0	500,000	USD/car
	30 mph		15,000	55,000	6,200	0	500,000	USD/ _{car}
Vehicle automation cost	35 mph	$C_{\rm v,a}$	15,000	90,000	8,700	0	500,000	USD/car
	40 mph		15,000	115,000	9,800	0	500,000	USD/car
	45 mph		15,000	130,000	12,000	0	500,000	USD/car
	50 mph		15,000	150,000	13,000	0	500,000	USD/car
Vehicle life		l_v	5	5	5	5	5	years
CO ₂ per Joule		γ	0.14	0.14	0.14	0.14	0.14	g/kJ
Time from \mathscr{G}_W to \mathscr{G}_R		twR	300	300	300	300	300	s
Time from \mathscr{G}_R to \mathscr{G}_W		t _{RW}	60	60	60	60	60	s
Speed limit fraction		β	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	-
	100 %				148,000,00	0		USD/year
Subway operational cost	133 %	$C_{\rm s,o}$			197,000,00	0		USD/year
	200 %				295,000,00	0		USD/year
Subway fixed cost		$C_{\rm s,f}$			14,500,000)		USD/ _{train}
Train life		ls			30			years
Subway CO2 emissions pe	er train	$m_{\rm CO_{2},s}$			140			ton/year
Train fleet baseline		n _{s,baseline}			112			trains
Subway service frequency		$\varphi_{i,\text{baseline}}$			$\frac{1}{6}$			1/minutes
Time from GW to GP and	ice-versa	tws			60			s



21 of 28

			Results	
00	000	00000000000	0000000	0

Results – Case 1 (Constant Automation Cost)



	Results 0000●0000	

Extension – Parking Space Allocation

Autonomous cars could cut traffic and pollution — or make them worse, planners say (Washington Post, 2019)

Automated vehicles can't save cities (New York Times, 2018)

Autonomous vehicles: To park or not to park? (Forbes, 2019)

	Results 00000●000	

Extension – Parking Space Allocation

Consider travel requests in two consecutive time windows:

$$\rho_{m_1} = (o_{m_1}, d_{m_1}, \alpha_{m_1}) \ \forall m_1 \in \{1, \dots, M_1\}, \quad \eta_{m_2} = (o_{m_2}, d_{m_2}, \alpha_{m_2}) \ \forall m_2 \in \{1, \dots, M_2\}.$$

Look at the flow changes on road arcs:

$$\Delta\mathsf{Flow}(i,j) = |f_0(i,j) - g_0(i,j) + f_{m_1}(i,j) - g_{m_2}(i,j)| \quad \forall (i,j) \in \mathcal{A}_{\mathsf{R}}.$$

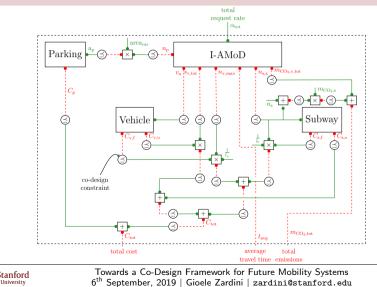
Distribute parked cars accordingly:

$$n_{\mathsf{p}}(i,j) = \frac{\Delta \mathsf{Flow}(i,j)}{\sum\limits_{(i,j)\in\mathcal{A}_{\mathsf{R}}} \Delta \mathsf{Flow}(i,j)} \cdot (n_{\mathsf{v},\mathsf{max}} - n_{\mathsf{v},\mathsf{e}})_{\eta}$$

	Results	
	000000000	

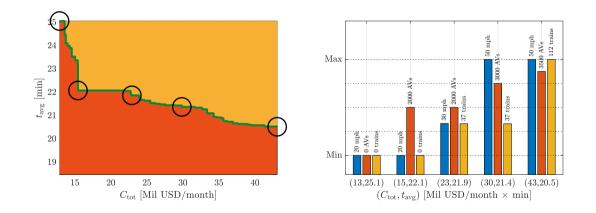
Extension – Parking Space Allocation

AS



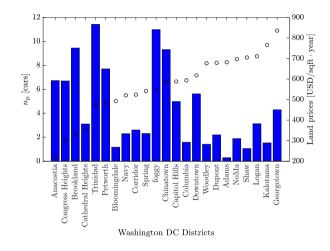
	Results	
	000000000	

Extension – Case 1 Preliminary Results



	Methodology 00000000000	Results 00000000●	Conclusions O

Extension – Case 1 Preliminary Results (musical chairs)



		Conclusions •
Conclusions		

Summary

- Co-Design framework for future mobility systems.
- Provides a new, different perspective.
- Tool for stakeholders such as AVs companies and policy makers.
- Modular and compositional, ready to be extended.

Outlook

- Parking space allocation.
- User-friendly interface.
- Model complexity.

Partial Orders

Consider a set \mathcal{P} and a partial order $\leq_{\mathcal{P}}$, defined as a reflexive, antisymmetric, and transitive relation. Then, \mathcal{P} and $\leq_{\mathcal{P}}$ define the partially ordered set (poset) $\langle \mathcal{P}, \leq_{\mathcal{P}} \rangle$.

Bottom and Top

The least and maximum elements of a poset are called bottom and top, and are denoted by $\perp_{\mathcal{P}}$ and $\top_{\mathcal{P}}$, respectively.

CPO and DCPO

A set $S \subseteq \mathcal{P}$ is *directed* if each pair of elements $x, y \in S$ has an upper bound. A poset is a *directed complete partial order* (DCPO) if each of its directed subsets has a top, and it is a *complete partial order* (CPO) if it has a bottom as well.

Chains and Antichains

A *chain* is a subset $S \subseteq \mathcal{P}$ where all elements are comparable, i.e., for $x, y \in S$, $x \preceq_{\mathcal{P}} y$ or $y \preceq_{\mathcal{P}} x$. Conversely, an *antichain* is a subset $S \subseteq \mathcal{P}$ where no elements are comparable, i.e., for $x, y \in S$, $x \preceq_{\mathcal{P}} y$ implies x = y.

Monotonicity

A map $g : \mathcal{P} \to \mathcal{Q}$ between two posets is *monotone* iff $x \preceq_{\mathcal{P}} y$ implies $g(x) \preceq_{\mathcal{Q}} g(y)$.

Scott Continuity

A map $f : \mathcal{P} \to \mathcal{Q}$ between directed complete partial orders (DCPOs) is **Scott Continuous** iff for each directed subset $D \subseteq \mathcal{P}$, the image f(D) is directed, and $f(\sup(D)) = \sup f(D)$.

Least Fixed Point

A least fixed point of $f : \mathcal{P} \to \mathcal{P}$ is the minimum (if it exists) of the set of fixed points of f:

$$\mathsf{lfp}(f) = \min_{\preceq} \{ x \in \mathcal{P} : f(x) = x \}.$$

The least fixed point does not need to exist. Monotonicity of the map f plus completeness is sufficient to ensure existence.

Lemma

- If \mathcal{P} is a CPO and $f : \mathcal{P} \to \mathcal{P}$ is monotone, then lfp(f) exists.
- Assume *P* is a CPO, and *f* : *P* → *P* is Scott continuous. then the least fixed point of *f* is the supremum of the Kleene ascent chain

$$\perp \leq f(\perp) \leq f(f(\perp)) \leq \ldots \leq f^{(n)}(\perp) \leq \ldots$$

Design Problem

A design problem (DP) is a tuple $\langle \mathcal{F}, \mathcal{R}, h \rangle$ such that \mathcal{F} and \mathcal{R} are CPOs, and $h : \mathcal{F} \to A\mathcal{R}$ is a **monotone** and **Scott-continuous** function. Each functionality $f \in \mathcal{F}$ corresponds to an antichain of resources $h(f) \in A\mathcal{R}$.

Monotone Co-Design Problem

A MCDP is a tuple $\langle \mathcal{A}, \mathbf{T}, \mathbf{v} \rangle$, where:

- \mathcal{A} is any set of atoms, to be used as labels.
- The term **T** in the {series, par, loop} algebra describes the scruture of the graph:

 $\mathbf{T} \in \mathsf{Terms}(\{\mathsf{series},\mathsf{par},\mathsf{loop}\},\mathcal{A}).$

• The valuation: $v : \mathcal{A} \rightarrow \mathsf{DP}$ assigns a DP to each atom.

Product Operator

For two maps $h_1 : \mathcal{F}_1 \to A\mathcal{R}_1$ and $h_2 : \mathcal{F}_2 \to A\mathcal{R}_2$, define

$$egin{aligned} h_1\otimes h_2: (\mathcal{F}_1 imes \mathcal{F}_2) &
ightarrow \mathsf{A}(\mathcal{R}_1 imes \mathcal{R}_2)\ &\langle f_1, f_2
angle &\mapsto h_1(f_1) imes h_2(f_2). \end{aligned}$$

Series Operator

For two maps $h_1: \mathcal{F}_1 \to A\mathcal{R}_1$ and $h_2: \mathcal{F}_2 \to A\mathcal{R}_2$, if $\mathcal{R}_1 = \mathcal{F}_2$, define

$$h_1 \bigcirc h_2 : \mathcal{F}_1 \to A\mathcal{R}_2$$

 $h_1 \mapsto \underset{\preceq \mathcal{R}_2}{\operatorname{Min}} \bigcup_{r_1 \in h_1(f)} h_2(r_1).$

Loop Operator

For a map $h: \mathcal{F}_1 \times \mathcal{F}_2 \to \mathsf{A}\mathcal{R}$, define

$$egin{aligned} h^{\dagger} &: \mathcal{F}_1
ightarrow \mathsf{A}\mathcal{R}, \ f_1 &\mapsto \mathsf{lfp}\left(\Psi^h_{f_1}
ight), \end{aligned}$$

where lfp is the least-fixed point operator, and $\Psi^h_{f_1}$ is

$$\Psi_{f_1}^h: A\mathcal{R} \to A\mathcal{R},$$
$$R \mapsto \underset{\preceq \mathcal{R}}{\operatorname{\mathsf{Min}}} \bigcup_{r \in R} h(f_1, r) \cap \uparrow r.$$

DPI

A design problem with implementation (DPI) is a tuple $\langle \mathcal{F}, \mathcal{R}, \mathcal{I}, exec, eval \rangle$, where

- \mathcal{F} is a poset, called **functionality** space.
- \mathcal{R} is a poset, called **resources** space.
- \mathcal{I} is a poset, called **implementation** space.
- the map exec : $\mathcal{I} \to \mathcal{F},$ execution, maps an implementation to the functionality it provides.
- the map eval : $\mathcal{I} \to \mathcal{R}$, evaluation, maps an implementation to the resource it requires.

Problem

Given a functionality $f \in \mathcal{F}$, find the implementations in \mathcal{I} that realize the functionality f (or higher) with minimal resources, or provide a proof that there are none:

$$\begin{array}{ll} \text{using} & i \in \mathcal{I}, \\ \text{Min}_{\preceq_{\mathcal{R}}} & r, \\ \text{s.t.} & r = \text{eval}(i), \\ & f \preceq_{\mathcal{F}} \text{exec}(i) \end{array}$$

).

Problem

Given a DPI $\langle \mathcal{F}, \mathcal{R}, \mathcal{I}, \text{exec}, \text{eval} \rangle$, define the map $h : \mathcal{F} \to A\mathcal{R}$ that associates to each functionality f the objective function of Problem 1, which is the set of minimal resources necessary to realize f:

$$\begin{array}{ll} h: & \mathcal{F} \to \mathsf{A}\mathcal{R}, \\ & f \mapsto \min_{\preceq n} \{ \mathsf{eval}(i) | (i \in \mathcal{I}) \land (f \preceq \mathsf{exec}(i)) \}. \end{array}$$

If a certain functionality f in infeasible, then h(f) is the empty set.

Background – Co-Design Complexity

Suppose $dp_0 = loop(dp_0)$, where dp_0 is an MCDP that is described only using series and parallel operators. Suppose that the resource space is \mathcal{R}_0 . Then evaluating h_0 takes at most c computation:

- Memory: $O(width(\mathcal{R}_0))$.
- Number of steps: $O(\text{height}(A\mathcal{R}_0))$.
- Computation: $O(width(\mathcal{R}_0) \times height(A\mathcal{R}_0) \times c)$

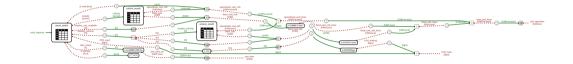
Modeling – Congestion Model

Problem

Each road arc is subject to a baseline usage u_{ij} and has a nominal capacity c_{ij} .

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) + u_{ij} \leq c_{ij} \quad orall(i,j) \in \mathcal{A}_{\mathsf{R}}.$$

Co-Design - The Monotone Co-Design Problem



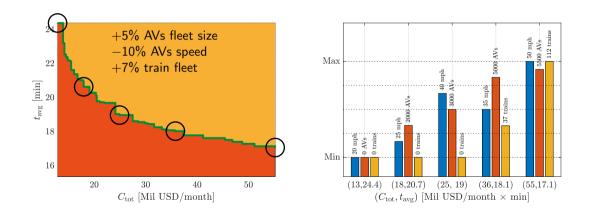
Case Study – Parameters and Units for Sensitivity

Parameter Baseline road usage		Variable u _{ij}			Value 93			Units %
			Case 1	Case 2.1	Case 2.2	Case 3.1	Case 3.2	
Vehicle operational cost		$C_{\rm v,o}$	0.084	0.084	0.062	0.084	0.084	USD/mile
Vehicle cost		$C_{\rm v,v}$	32,000	32,000	26,000	32,000	32,000	USD/car
	20 mph		15,000	20,000	3,700	0	500,000	USD/ _{car}
	25 mph		15,000	30,000	4,400	0	500,000	USD/car
	30 mph		15,000	55,000	6,200	0	500,000	USD/ _{car}
Vehicle automation cost	35 mph	$C_{\rm v,a}$	15,000	90,000	8,700	0	500,000	USD/car
	40 mph		15,000	115,000	9,800	0	500,000	USD/car
	45 mph		15,000	130,000	12,000	0	500,000	USD/car
	50 mph		15,000	150,000	13,000	0	500,000	USD/car
Vehicle life		l_v	5	5	5	5	5	years
CO ₂ per Joule		γ	0.14	0.14	0.14	0.14	0.14	g/kJ
Time from \mathscr{G}_W to \mathscr{G}_R		twR	300	300	300	300	300	s
Time from \mathscr{G}_R to \mathscr{G}_W		t _{RW}	60	60	60	60	60	s
Speed limit fraction		β	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	$\frac{1}{1.3}$	-
	100 %				148,000,00	0		USD/year
Subway operational cost	133 %	$C_{\rm s.o}$			197,000,00	0		USD/year
	200 %				295,000,00	0		USD/year
Subway fixed cost		$C_{\rm s,f}$			14,500,000)		USD/ _{train}
Train life		ls			30			years
Subway CO_2 emissions per train m_{CO}		m _{CO2,5}	140				ton/year	
Train fleet baseline ns.bas		n _{s,baseline}	112			trains		
Subway service frequency ϕ		$\varphi_{i,\text{baseline}}$			$\frac{1}{6}$			1/minutes
Time from GW to GP and vice-versa		tws			60			s

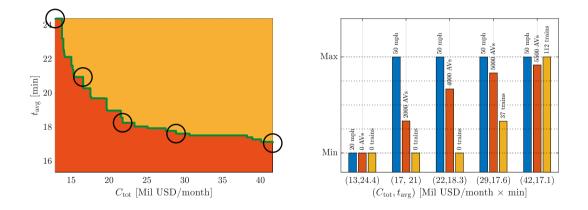
Towards a Co-Design Framework for Future Mobility Systems

 6^{th} September, 2019 | Gioele Zardini | zardini@stanford.edu

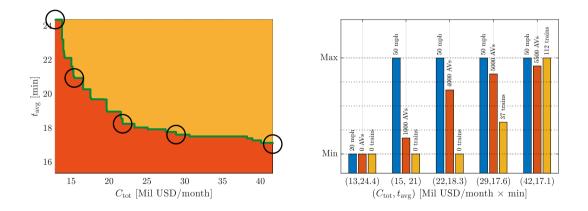
Results – Case 2.1 (speed-dependent automation cost)



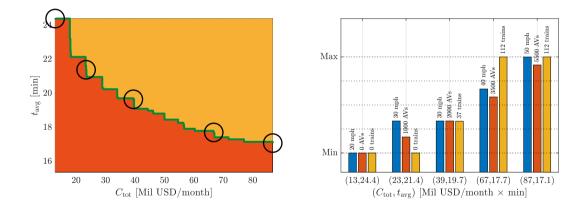
Results – Case 2.2 (speed-dependent automation cost)



Results – Case 3.1 (no automation cost)



Results – Case 3.2 (high automation cost)



Results – Sensitivity Analysis

