Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017

Lecture Summary

Lecture 01: Introduction

Definition 1. Computer Vision: Automatic extraction of meaningful information from
images and videos.

e Semantic information: meaning of objects.

e Geometric information: shapes.

Vision in Humans

Vision is the most powerful sense:

e Retina ~ 1000mm?.

e Contains 130 million photoreceptors (120 mio rods and 10 mio cones for color
sampling)

e 3GBytes/s information flow, would need 500 Megapixel camera (8 Megapixel and
range 15 degrees)

Why hard?

e only numbers, viewpoint variations, illumination challenges, motion, intra-class vari-
ations, scale and shape ambiguities

Origin: L.G. Roberts, MIT, 1963 , Solids Perception.

Visual Odometry (VO)

Definition 2. VO is the process of incrementally estimating the pose of the vehicle by
examining the changes that motion induces on the images of its onboard cameras.

Why VO?

e #* Wheel Odometry, VO not affected by wheel slippage and adverse conditions in
general.

e More accurate. Relative position error 0.1-2 %.
e Can be used as a complement to wheel encorders, GPS, IMUs,etc.

e Crucial for flying, walking and underwater robots.

Assumptions
e Sufficient illumination,
e dominance of static scene over moving objects,
e enough texture to allow apparent motion,

e sufficient scene overlap between consecutive frames.
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History
e 1980: NASA, Moraveck, Mars Rovers, sliding camera.

— Mars rover with single camera sliding on a rail horizontally, taking 9 pictures
at equidistant intervals.

— Corners were detected with his algorithm and normalized using correlation.

— Outliers were removed by checking depth inconsistencies.

— Although one camera, stereo becuase used triangulation between
different positions of the robot.

— Single camera without stereo vision has disadvantage that motion cab be re-
covered up to a scale factor.

e 1980-2000: NASA: mission to mars.

e 2004: David Nister: Visual Odometry paper.

VO vs VSLAM vs SFM

SFM > VSLAM > VO.

Structure From Motion (SFM): more general than VO, tackles the problem of 3D
reconstruction and 6DOF pose estimation from unordered image sets (e.g. reconstruc-
tion through flickr).

— VO focuses on estimating 3D motion sequentially and in real time.

Visual Simultaneous Localization And Mapping (VSLAM):

e VO focuses on incremental estimation and local consistency.

focus on globally consistent estimation.

VSLAM = VO + loop detection + graph optimization.

Tradeoff between performance and consistency, simplificity of implementation.

e VO doesn’t need to keep track of all previous history of the camera. Good for
real-time.

Working Principle of VO:

1. Compute the relative motion T}, from images I;_; to image I}

2. Concatenate them to recover full trajectory

c, =0C, T, (2)

3. An optimization over the last m poses can be done to refine locally the trajectory
(Pose-Graph or Bundle Adjustment).
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Direct Image Alignment

First of all, there is a difference between direct and indirect methods. Indirect methods
first extract features and then use them for localization and building of the map. Direct
methods instead, try to recover the environment depth and structure and the camera pose
through an optimisation on the map and camera parameters together (affected from light
changes).
— The whole direct problem is a minimization of the per-pixel intensity difference,
ie.
Tiop—1 = argming > || Ie(u; — Lo (w)][2 (3)
e Dense: =~ 300’000 pixels. Require powerful hardware (GPU)
e Semi-Dense: ~ 10’000 pixels.

e Sparse: &~ 2’000 pixels. (100-200 features x 4x4 patch). Basically pointclouds, used
mainly to do localization (camera pose).

VO Flowchart

VO computes the camera path incremental, pose per pose
1. Image sequence,
2. Feature detection (front end),
3. Feature matching (tracking) (front end).
4. Motion estimation (2D-2D,3D-3D,3D,2D) (front end),

5. Local optimization (back end).
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Lecture 02: Image Formation

How to Form an Image

Placing a film in front of an object and illuminating the object, the light is then reflected
on the film. Not reasonable image! The rays don’t converge in the same point, unsharp,
blur.

Circle Blur or Circle of Confusion

In optics, a circle of confusion is an optical spot caused by a cone of light rays from a
lens, not coming to a perfect focus when imaging a point source.

Pinhole Camera

Adding a barrier with a pinhole — camera obscura:
e Opening is the aperture.
e Reduces blurring.

e ideal pinhole: only one ray of light reaches each point on the film. Bigger aperture,
blurry image.

Why not as small as possible? Diffraction effects cause interference in waves as we near
the wavelenth and less light gets through.

Converging Lens

e Rays passing through the Optical Center are not deviated.

e All rays parallel to the Optical Axis converge at the Focal point

Using similar triangles and Figure 1 one gets

B
Z = E and
z
B e—f e _q (4)
A f o
Toghether we get the thin lens equation.
e e
—_1== )
Fo1=1 (5)

Remark.

e Any object point satisfying this equation is in focus. This is used for retrieving the
distance to an object, depth from focus.
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This is why we can think of a lens of focal length f as being equivalent to a pinhole
distance f from the focal plane. — we need to adjust the image plane such that
objects at infinity are in focus, namely

f

Molow=ty (7)

h z z

The dependence of the apparent size of the object on its depth is known as per-
spective.

In Focus and Blur Circle

e There is a specific distance from the lens at which world points are in focus in the
image.

e Other points project to a blur circle in the image with radius

Lo
R = 2% (8)

— a minimal pinhole gives minimal R and
— R should remain smaller than image resolution.

Projective Geometry

e Straight lines are still straight.
e Length and angles are lost.
e Parallel lines in the world intersect in the image as a vanishing point.

e Parallel planes in the world intersect in the image at a vanishing line.
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Other Parameters
Focus and Depth of Field

e DOF is the distance between the nearest and farthest objects in a scene that appear
acceptably sharp.

e Decrease in sharpness is gradual on each side of the focused distance.

e Smaller aperture increases the range in which the object appears in focus but reduces
the light.

e As f gets smaller: wide angle image.

e As f gets bigger: narrow angle image.

With Figure 2, one can compute the field of view

W2
B2 / 4

(XY.2)

Figure 2: Scheme for angles.

wn(2) = s fan ()] 0

— smaller FOV = larger focal length.

Digital Camera

Instead of using a film we use a sensor array and we convert informations in numbers (e.g.
[0, 255] for 8 bytes), as in Figure 3.

Color Sensing

e Bayer pattern (1976) places green filters over half of the sensors and red and blue over
remaining ones. Humans are more sensintive to high frequency detail in luminance
than chrominance. This method has the disadvantage that the number of detected
pixels is cut by 4.

e The three-chip color camera splits in three color filters the light and each chip
measures light intensity for one color. Here, resolution is preserved.

e Estimate missing components from neighboring values: demosaicing
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Figure 3: Procedure digital cameras.

Perspective Camera Model

The procedure reads

1. Change of coordinates from 3D world to adapted frame.

2. Projection from the camera frame to the image plane.

3. Change in pixel.

For convenience, the image plane is usially represented in front of C' such that the image

preserves the same orientation.

Figure 4: Frames.
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Perspective Projection

We use the notation from euclidean to homogeneous:

u u/w
v | = [v/w (10)
w 1

Homog. Fucl.

From similar triangles and Figure 5 one gets

f ZC ZC <11)
y_Ye o _fY
Fz VT z

Pc=(Xt’ 0’ Zc‘)r

L, ’
‘ C /\x Xe

<« 0
f Image Plane

Figure 5: Figure for perspective projection.

Pixel Coordinates

From local image plane coords (z,y) to the pixel coords (u,v), with scale factors k.,
(inverse of the effective pixel site along the u (v) direction, measured in pixelm™!):

kuf X
U= uy+ ky,x = u=1ug+ /
e (12)
ko fYe
v=1vy+ k,y = v =19+ )
Ze
which expressed in matrix form reads
Au o, 0 g Xe Xe
M]l=10 a vw| - |Y.|=K|Y.]|, (13)
A 0 0 1 Z. Ze

with v, = ky. f focal lengths and K calibration matrix (intrinsic parameter matrix).
At the end, it holds

u R t—» X'w
Ao ] = (K) - (I3x30) - (0 1) Y, |- (14)
1 v Y Zw

3% 3, intrinsic 3x4
4x4, extrinsic
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Lens Distortion
Radial Distortion

The amount of distortion of the coordinates of the observed image is a nonlinear function
of their radial distance. This is a transformation from ideal to distorted coordinates. For
most lenses, one writes a simple quadratic model

(1) = G2+ (), "

r? = (u—up)® + (v — vp)* (16)

Depending on the amount of distortion, one can introduce higher order terms:

Ug\ _ 2 4 6y (U — Uo U
(vd> = (14 k17r° + ko™ + k3r®) (U B vo> + (Uo) (17)
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Figure 6: Thin lens
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Lecture 03: Image Formation 2

Pose determination from n Points (PnP) Problem

Given the realitve spatial locations of n control points and given the angle to every pair
of control points from an additional point called the Center of Perspective Cp, find the
lengths of the line segments joining Cp to each of the control points.

We assume we know the camera intrinsic parameters. Given known 3D landmarks in the
world and their image correspondence in the camera frame, determine the 6DOF pose of
the camera in the world frame. Where is the camera?

e Given 1 point: oo solutions.

e Given 2 points: oo bounded solutions.

e Given 3 non collinear points: Finitely many (up to 4) solutions.
e Given 4 points: unique solution.

With 3 points one can use the fact that the angles inscribed in the triangle are the same:
the Carnot’s theorem reads

S123 = Lpaa + Lécs — 2LpaaLlecs cos(Opc.ac,an) (18)
In general, n independent polynomials with n unknowns, can have no more solution than
the product of their degrees: here 8.

— fourth point to disambiguate the solutions! By defining = = ﬁ—i we can reduce the
system to a 4" order equation

G() + GlfL' + GQ(L’Q + G3$3 + G4ZL’4 = 0. (19)

This applies to camera pose estimation from known 3D — 2D correspondences (e.g.
hololens).

Camera Calibration

Determine intrinsic and extrinsic parameters of the camera model.

Tsai, 1987: Measure the 3D position of more than 6 points on a 3D calibration target
and the 2D coordinates of their projection. We can do that, by recalling the perspective
projection equation, by neglecting the radial distortion.

10
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Direct Linear Transform

image point = p =

X
(Oéu 0 wo ri1 Tiz Tzt v

0 0 1 31 T32 T33 t3 le
Xw
mip Mi2 MMyz My Y (2())
assuming indep. elements = | mo1 Moy Moz Mmas Zw
m31 Mgz M3z M3q 1w
M
(mlT igw
_ T w
T w
ms 1
P
It follows
@ mi-P
“= @ ml-P
v 1)
v = 2 —= m2 i
w mi-P
and hence
T
m; —umz) - P,=0
o 22)
(my —vimg) - Py =0
Rearranging the terms you have
AN AT o
o Pf —u P 2]~ \o)"
ms3
For n points we have a big 2n x 12 matrix Q).
The problem hence reads

where () is known and M is unknown.

Minimal Solution:
e Rank 11 to have unique non-trivial (up to scale) solution M (@ known!).
e Each 3D/2D correspondence provides 2 independent equations.

e 5+ 1 correspondences are needed (in fact 6).

11
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Overdetermined Solution:
e More than 6 points.

e Minimize ||QM]||* with the constraint ||M]|| =1 — SVD. The solution is the eigen-
vector corresponding to the smallest eigenvalue of Q7). That’s because this is the
unit vector x that minimizes ||Qx||* = 27 QT Qx. This can be done in matlab with

[U,S,V] = svd(Q);
M=V(:,12);

Degenerated Configurations:
e Points lying on a plane and or along a line passing through the projection center.
e Camera and points on a twisted cubic (degree 3).

Once we have M, we know from its definition
M = K(R|T). (25)
Remark.
e We are not enforcing orthogonality of R.

e QR factorization of M, whith R (orth.) and T (upper triangular matrix).

Tsai Method 1987
1. Edge detection.

2. Straight line fitting to the detected edges.
3. Intersecting the lines to obtain the image corners (<0.1 pixels accuracy).

4. Use more than 6 points (more than 20) and not all on same plane.

Originally pixels were not squared (parallelogramms, skew, no rectangle). Most cameras
today are well manufactured: £+ =1 and K5 = 0.

Residual: Average reprojectioﬂ error, computed as the distance (in pixels) between the
observed point and the camera-reprojected 3D point. Accuracy of calibration.

What if K is known? Nothing changes!

12
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Calibration from Planar Grids (Homographies)

Zhang, Microsoft Use a planar grid (chessboard) and a few image of it at different orien-

tations. Setting Z,, = 0 we get

- Xy
U a, 0 v ri1 Ti2 T3t v
vl =10 a, v Tor Toa To3 lo 6”
W 0 0 1 31 T332 T33 tg 1
Oy, 0 0 11 T12 tl Xw
=10 a w ro1 T2 to Yo
0 0 1 31 732 t3 1 (26)
X
=H-|Y,
1
nt X
— () (v,
)\ 1
Hence, one more time
a hT-P
YT TP
_ (27)
vV = — =
w WP
and hence
Rl —uhl) - P, =0
. 29
(hy —wvihg) - P;=0
Rearranging the terms you have
Pr 0" —u, Pl u 0
(OT PlT _UIPIT) . h2 = (O) ) (29)
hs3
where () is known and H is unknown.
For n points we have a big 2n x 9 matrix Q.
The problem hence reads
Q-H=0. (30)

Minimal Solution:
e Rank 8 to have unique non-trivial solution H (@ known!).
e Each point correspondence provides 2 independent equations.
e 4 non-collinear points are needed.

Overdetermined Solution:

13
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e More than 4 points.

e Minimize ||[QM]||> — SVD. The solution is the eigenvector corresponding to the
smallest eigenvalue of QT Q. We can decompose as before.

This projective transformation is called Homography. Applications are
e Augmented reality

e Beacon-based localization.

DLT vs. PnP

e If the camera is calibrated, only R and 7" need to be determined. Pnp leads to
smaller error.

Non Conventional Camera Models
Omnidirectional Cameras

e Wide FOV dioptric cameras (e.g. fisheye (180)).

e Catadioptric cameras (e.g. mirrors (>180)) combine a standard camera with a
shaped mirror.

— Mirror: central, mirror (surface of revolution of a conic), single effective view
point.

— Perspetive: hyperbola+perspective / parabola+orthographic lens.

e Polydioptric cameras (e.g. multiple overlapping cameras) ~ 360..

Central: A vision system is said to be central when the optical rays to the viewd objects
intersect in a single point in 3D called projection center or single effective viewpoint. For
hyperbolic and elliptical mirrors, the single viewpoint property is achieved by ensuring
that the camera center coincides with one of the foci of the hyperbola (ellipse). For this,
see Figure 7

Class of rotated (swept) conic shapes (hyperbolical, parabolical, elliptical mirrors)
Why is it important that the camera is central? If the camera is central, we can
unwarp parts of omnidirectional image into perspective. We can transform image points
in the unit sphere. We can apply algorithms for perspective geometry. Perspective and
omnidirectional model are equal!

14
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/.
L

Fig. 3. Central catadioptric cameras can be built by using hyperbolic and
parabolic mirrors. The parabolic mirror requires the use of an orthographic lens.

Figure 7: How should the mirrors be?

Lecture 04: Image Filtering

Difference between convolution and correlation: correlation is a metric for similarity be-
tween two different signals. Convolution applies one signal to the other. Filtering: Ac-
cepting or rejecting certain frequency components.

e low-pass filter smooths an image.

e high-pass filter retains the edges of an image.

Low-pass Filtering

We want to reduce noise! There different types of noise:
e Salt and pepper noise: randum occurences of black and white pixels.
e Impulse noise: random occurences of white pixels.
¢ Gaussian noise: variations in intensity drawn from a Gaussian normal distribution.

How can we reduce the noise to try to recover the ideal image?

Moving Average

Replaces each pixel with an average of all the values in its neighborhood.
e Pixels like neighbors.

e Assumption: noise process independent from pixel to pixel.

15
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Weighted Moving Average

Can add weights to moving average
e Uniform weights.
e Non-uniform weights.

Nothing else than convolution!

Convolution

One of the sequences is flipped before sliding over the other. Linearity, associativity,
commutativity. Notation f *¢. In 1D:

fro= [ty (31)
In 2D:
Glisjl = H+F
kook . . (32)
= Z Z Hlu,v|F[i —u,j — v].
u=—k v=—"k

In other words: replacing each pixel with a linear combination of its neighbors. The filter
H is also called kernel or mask. One can change the weights

Gaussian Filter

What if we want the closest pixels to have a higher influence on the output?

1 u2 1)2
h(u,v) e 5t (33)

2mo?

What parameter matter?

e Size of the kernel. The Gaussian has generally infinite support but discrete filters
use finite kernels.

e The variance of gaussian: determines extent of smoothing (larger variance, larger
smoothing).

Boundary Issues

The filter window falls off the edge of the image. We need to pad the image borders with
e Zero padding (black)
e Wrap around
e Copy edge

e Reflect across edge

16
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Median Filter

Linear smoothing filters do not alleviate salt and pepper noise! Non-linear filter. Removes
spikes: good for impulse and salt and pepper noise.
Computes the median value and replaces the high value with that.

e +: Preserves sharp transitions.

e -: Removes small brightness variations.

High-pass Filtering (edge detection)

We want an idealized line drawing. The edge contours in the image correspond to impor-
tant scene contours. Edges are nothing else than sharp intensity changes. Images can be
expressed as functions f(x,y). Edges correspond to extrema of derivative.

Differentiation and Convolution

For discrete data, it holds

df(I,y) ~ f(x+1,y)—f(:v,y)
de  — 1 ' (34)

—1

1 ) . Other finite differences methods

Partial derivatives of an image are in = (-1,1), in y (

are the

e Prewitt Filter

-1 0 1 -1 -1 -1
G.=\|-1 0 1], G,=10 0 0 (35)
-1 0 1 1 1 1
e Sobel Filter
-1 0 1 -1 =2 -1
G.=\|-2 0 2], Gy,=10 0 0 (36)
-1 0 1 1 2 1

vi=(% %) (37)

of
12
O =tan’ <I§/”) : (38)

The edge strength is given by

IV = \/ %)2 T %)2. (39)

17
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Handling Noise

If we differentiate a noisy signal, we get infinite many peaks. Solutions are
e first smooth the signal (with a convolution with ). Then differentiate.

e Combining the two, convolute with (Lh) * f.

Laplacian of a Gaussian

Consider
o2
@(h * f) (40)

Where is the edge? Zero-crossin of bottom graph.

Summary

e Smoothing filters:

— Has positive values.
— Sums to 1 — preserves brightness of constant regions.

— Removes high frequency components.
e Derivative Filters

— Has opposite signs, used to get high response in regions of high constrast.
— Sums to 0 — no response in constant regions.

— highlights high frequency components.

The Canny Edge-Detection Algorithm

e We compute the gradient of smoothed image in both directions. (convolve the image
wieh x and y derivatives of Gaussian filters)

e We discard pixels whose gradient magnitude is below a certain threshold.

e Non-maximal suppression: local maxima along gradient diretion. High intensity
means high probability of the presence of an edge: this is not enough. Only local
maxima can be considered as part of an edge. A local maxima can be found where
the gradient derivative is 0.

— Compare the edge strength of the current pixel with the edge strength of the
pixel in the positive and negative gradient directions.

— If the edge strength of the current pixel is the largest compared to the other
pixels in the mask with the same direction (i.e., the pixel that is pointing in the
y-direction, it will be compared to the pixel above and below it in the vertical
axis), the value will be preserved. Otherwise, the value will be suppressed.

18
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Lecture 05: Feature Detection 1

Goal: reduce amount of data to process in later stages, discard redoundancy to preserve
only what is useful (lower bandwidth and memory storage). In general

e Edge detection.
e Template matcing.

e Keypoint detection.

Filters for Template Matching

We want to find locations in an image that are similar to a template. If we look at filters
as templates, we can use correlation to detect these locations. What if the template is
not identical to the object we want to detect? This works only if

e Scale,

e orientation,

e illumination,

e appearance of the template and the object are similar.

What about the objects in the background?

Correlation as Scalar Product

We consider images H and F' as vectors and express the correlation between them as
(H,F) = [|H]| - [|F|[| - cos(6). (41)

If we use Normalized Cross Correlation (NCC) (highest complexity), we consider the
unit vectors of H and F', hence we measure their similarity based on the angle 6. For
identical vectors one gets NCC = 1. NCC is invariant to linear intensity changes! It

holds

B (H, F)
«os(0) = T TIE)

Sk T H(w,0)F(1,0) (42)
= > (.8.
\/Z'Z:_k S H(u,0)? + \/Zﬁ:—k S F(u,v)?

Other methods are the Sum of Absolute Differences (SAD) (simplest)

SAD = > |H(u,v) — F(u,v)], (43)

u=—kv=—"k
the Sum of Squared Differences (SSD) (high computational complexity)

k k

> (H(u,v) = F(u,v))™ (44)

u=—k v=—~k

19
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The normalized cross correlation (NCC) takes values between -1 and 1, 1 equals
identical.

To account for the difference in mean of the two images (caused principally by illumination
changes), we substract the mean value of each image:

e Zero-mean Sum of Absolute Differences (ZSAD)

ZSAD = 3" 3 [(H(wv) = ) — (Flu, ) — )] (45)

u=—k v=—~k

e Zero-mean Sum of Squared Differences (ZSSD)

D> (H(uw) = pa) = (Flu,v) = pr)). (46)

u=—kv=—k

e Zero-mean ormalized Cross Correlation (ZNCC)

ek o (H (u,0) — ) - (F(u,0) — i)

ZNCC = |
Vo T H o) — T S (Fluo) — e
=k 2 (47)
, with gy = Zu;kg\;:l,),; H(uw)

Remark. ZNCC is invariant to affine intensity changes.

Census Transform

It maps an image patch to a bit string. The general rule is that if a pixel is greater
than the center pixel its corresping bit is set to 1, else to 0. For a n x n window
the string will be n? — 1 bits long. The 2 bit strings are compared using the Hamming
distance (if bigger than previous 1, else 0, starting from right). The Advantages are

e More robust to object background problem

e No square roots or divisions are required. Efficient!

e Intensities are considered relative to the center pixel of the patch making it invari-
ant to monotonic intensity changes.

Point-feature Extraction and Matching

Keypoint extraction is the key ingredient of motion estimation! Furthermore, used for
panorama stitching, object recognition, 3D reconstruction, place recognition, google im-
ages.

Why problematic? We need to align images! How? Detect point features in both images
and find corresponding pairs to align them. Two big problem arise

e Problem 1: Detect the same points independently in both images. No chance to
match, need repeatable feature detector.

20
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e Problem 2: for each point, identify its correct correspondence. Need reliable and
distinctive feature descriptor. Robust to geometric and illumination changes.

Geometric changes: rotation, scale and viewpoint (i.e. perspective changes).
INlumination changes: Affine illumination changes

I'(z,y) = al(x,y) + . (48)

Invariant local features: Subset of local feature types designed to be invariant to
common geometric and photometric transformations. In general

1. Detect distinctive interest points,
2. extract invariant descriptors.

Distinctive features s.t. repeatable? Some features are better than others (angles,
not uniform color,...).

Corners: a corner is defined as the intersection of one or more edges. It has high
localization accuracy. Less distinctive than a blob. Examples of corner detectors are
Harris, Shi-Tomasi, SUSAN, FAST.

Blob: is any other image pattern which is not a corner, that differs significantly from
its neighbors in intensity and texture. This has less localization accuracy, but better for
place recognition because more distinctive than a corner E.g. MSER, LOG, DOG, SIFT,
SURF, CenSurE.

Corner Detection

In the region around a corner, the image gradient has two or more dominant directions.
Corners are repeatable and distinctive.

The Moravec Corner Detector (1980)

We can easily recognize the point by looking through a small window: by shifting the
window, one can give large change in intensity. Moravec used SSD, whith

e Flat region: no intensity change! (SSD~ 0 in all directions).

e Edge: no change along the edge direction (SSD a0 along adge but >> 0 in other
directions).

e Corner: significant change in at least two directions (SSD >> 0 in at least 2
directions.

Sums of squares of differences of pizels adjacent in each of four directions (horizontal,
vertical and two diagonals) over each window are calculated, and the window’s interest
measure is the minimum of these four sums.[Moravec,80]

21
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The Harris Corner Detector (1988)

Implements Moravec corner detector without physically shifting the window and hence

just by looking at the patch itself: using differential calculus.

Implementation:LEt [ be a grayscale image. We consider the reference patch centered
at (z,y) and the shifted window centered at (z + Az,y+ Ay). The patch has size P. We

compute
SSD(Az, Ay) = Z (I(z,y) — I(x + Az, y + Ay))*.
zyeP
We define
; @y o 0l(zy)
’ ox 7 oy

and approximate with first order Taylor expansion:

Iz + Az, y + Ay) = I(z,y) + L(z,y) Az + I (z,y) Ay
= SSD(Ax, Ay) ~ Y (L(z,y)Az + I(x,y)Ay)*

z,yeP

Simple quadratic function in the deltas! We can write this in matrix form:

2 Il A
SSD(Az, Ay) ~ (Az Ay) - Y ([ ﬂ}y I;/) : ( A;),
r Yy

z,yeP
NS

J/

~
M

where M is the second moment matrix. Let’s analyze some special cases:

0 Ao

e Flat region: M = (8 8)

e Edge along x: M = (O O).

e Aligned corner: M = (008(45) _Sin(%)) : (Al 0) ' (fZisxgzlig) igé((i?)

sin(45)  cos(45) 0 A

(49)

(50)

(51)

(52)

What if the corner is not aligned with the image axis? The general case has M symmetric,

which can always be decomposed into

- _1- Al 0 .
M=R (0 R

(53)

Claim 1. One can visualize this as an ellipse with axis lengths determined by eigenvalues

(1/4/Amax.min) and two axes determined by the eigenvectors of M (columns of R).

Proof. Let’s consider

A O vl
e (3 1) ()

22

(54)



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017

Then, using the quadratic form one gets

)\1 0 UT
xT-(m 'U2>'(0 /\2)'<U;T)-33=1

AlevlvlTx + /\ngvg%Tx =1
Ml 2)" (o ) + Ao )T (15 2) = 1 (55)
T,.\2 T,.\2
(Ullx)z i (U2155)2 —1,
(&) (%)
from which is clear that the eigenvectors vy, v, represent the axis directions of the ellipse
and \/LA?’ ﬁ their length. [

Remark. Large ellipses denote flat region, small ones a corner!

Interpreting the eigenvalues A corner can then identified by checking whether the
minimum of the two eigenvalues of M is larger than a certain user-defined threshold.
Mathematically, this is the Shi-Tomasi detector

R = min(Aq, A2) > threshold. (56)

e Corner: Ao are large, R > threshold, SSD increases in each direction.
e Edges: A\; >> )\, or vice-versa.

e Both small: flat region.

Problem: The eigenvalues are expensive to compute: Harris and Stephens suggested to
use the fact

R= XX — k(A + Xo)? =det(M) — k - trace*(M), k € (0.04,0.15) (57)
Algorithm:
(I) Compute derivatives in = and y directions e.g. with Sobel filter.

(IT) Compute 12,12, I,1,.

xr Ty

IIT) Convolve 12,12 I,I,, with a box filter to get the sums of each element, which are
Ty Y

the entries of the matrix M. (optionally use Gaussian filter instead of box filter to
give more imoportance to central pixels).

(IV) Compute Harris Corner Measure R (with Shi-tomasi or Harris).
(V) Find points with large corner response (R > threshold).

(VI) Take the points of local maxima of R.

Harris vs. Shi-Tomasi???
Repeatability Can it re-detect the same image patches (Harris corners) when the image
exhibits changes?

e Corner response R is invariant to image rotation. Shape (eigenvalues) remains
the same. Isotropic!

e Invariant to affine intensity changes: eigenvalues are scaled by a constant factor
but position of the maxima remains the same.

e Not invariant to image scale. Scaling the image by x2 results in 18 % of corre-
spondences get matched.
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Lecture 06: Point Feature Detection 2

Scale Changes

A possible solution is to rescale the patch, i.e. bring it to the canonical scale. The problem
by scale search is that it is scale consuming: we need to do it individually for all patches
in one image. In fact, the complexity would be (NM)? (assuming N features per image
and M scale levels for each image). = a possible solution is to assign each feature its own
scale.

Automatic Scale Selection

e Design a function on the image patch, which is scale invariant, i.e., which has the
same value for corresponding regions, even if they are at different scales.

e For a point in one image, we can consider it is a function of region size.

Approach: We take a local maximum of the function: the region size for which the
maximum is achieved, should be invariant to image scale. This scale invariant region
size is found in each image independently. When the right scale is found, the patch
must be normalized.

e Good function: single and sharp peaks!

e If multiple peaks: assign more region sizes to have a unique feature. Blobs and
corners are the ideal locations!

Function:

Convolve image with kernel to identify sharp discontinuities:
f = Kernel x Image (58)

It has been shown that the Laplacian of Gaussian kernel is optimal under certain assump-
tions

0G(x,y) | 0G(z,y)
Ox? oy?

Then, the correct scale is found as local maxima across consecutive smoothed images.

This should be done for severals region sizes (15).

Note that an efficient implementation of multisale detection uses the so called scale-space

pyramid: instead of varying the window size of the feature detector, the idea is to generate

upsampled (enlarge the image, interpolating) or downsampled versions of the same image.

LoF = V2G(z,y) = (59)

Feature Descriptors

We already know how to detect points, but how can we describe them for matching?

e Simplest Descriptor: Intensity values within a squared patch or gradient his-
togram.

e Census transform or Histograms of Oriented Gradients.
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Then, descriptor mathicng can be done using Hamming Distance (Census) or (Z)SSD,(Z)SAD,
(Z)NCC. We would like to fame the same features regardless of the transformation
that is applied to them: most feature methods are designed to be invariant of

e 2D translation,
e 2D rotation,
e scale.

Some of them can also handle

e Small view point invariance (e.g. SIFT works up to about 60 degrees).

e Linear illumination changes.

How to achieve Invariance?
Step 1: Re-scaling and De-rotation:
e Find the correct scale using LoG operator.
e Rescale the patch to a default size (e.g. 8 x 8 pixels).
e Find the local orientation (e.g. with dominant direction, Harris eigenvectors)

e De-rotate the patch.

In order to de-rotate the patch, one uses patch-warping:

Patch Warping
1. Start with empty canonical patch (all pixels set to 0).

2. For each (z,y) in the empty patch, apply the warping function W (z, y) to compute
the corresponding position in the detected image. It will be in floating point and
will fall between the image pixels.

3. Interpolate the intensity values of the 4 closest pixels in the detected image with

e Nearest neighbor,

e Bilinear interpolation

Example 1: Rotational Warping
Counterclockwise rotation:
x' = xcos(f) — ysin(h)

y' = xsin(f) + y cos(0) (60)

Bilinear Interpolation

It is an extension of the linear interpolation, for interpolating functions of two variables
on a rectilinear 2D grid. The key idea is to perform linear interpolation in one direction
and then, again, in the other direction. We have that

I(z,y) =1(0,0)-(1—2)- (1—y)+1(0,1)-(1—2)-y+1(1,0)- - (1—y)+1(1,1)-zy (61)

25



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017

Example 2: Affine Warping

To achieve slight view-point invariance:

e The second moment matrix M can be used to identify the two directions of fastest
and slowest change of intensity around the feature.

e Out of these two directions, an elliptic patch is extracted at the scale computed
with the LoG operator.

e The region inside the ellipse is normalized to a circular one.
There are however disadvantages:

- If not warped patches, very small errors in rotation, scale and view-point will affect
matching score significantly.

- Computationally expensive (need to unwarp every patch)

A better solution nowadays is HOGs

Histogram of Oriented Gradients

e Compute a histogram of orientations of intensity gradients.
e Peaks in histogram are dominant orientations.

e Keypoint orientation= histogram peak. If there are multiple candidate peaks,
construct a different keypoint for each such orientation.

e Rotate patch according to this angle: this puts the patches into a canonical form.

Scale Invariant Feature Transform (SIFT) Descriptor

The uniqueness of SIFT is that these features are extremely distinctive and can be suc-
cessfully mathed between images with very different illumination, rotation, viewpoint,
and scale-changes. The SIFT algorithm does:

e Identification of Keypoint location and scale
e Orientation assignment
e Generation of keypoint descriptor
Descriptor computation:
1. Divide the patch into 4 x 4 sub-patches=16 cells.
2. Compute HOG (8 bins, i.e. 8 directions) for all pixels inside each sub-patch.

3. Concatenate all HOGs into a single 1D vector. This is the resulting SIF'T descriptor:
4 x 4 x 8 =128 values.

4. Descriptor matching: SSD (euclidean-distance).
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Intensity Normalization

The descriptor vector v is then normalized such that its [ norm is 1:

v

V= —— (62)

Ny
Remark. This guarantees that the descriptor is invariant to linear illumination changes.
This was already invariant to additive illumination because it is based on gradients.
SIFT matching robustness

e Can handle changes in viewpoint (up to 60 degree out-of-plane rotation).
e Can handle significant changes in illumination (low to bright scenes).

e Expensive: 10fps.

In order to reduce the computational cost, one can use difference of Gaussian instead of
Lapiacian:
LOG =~ DOG = G (z,y) — Go(z,y) (63)

SIFT Detector

SIFT keypoints are local extrema (maxima and minima) in both space and scale of the
DoG images:

e Detect maxima and minima of difference-of-Gaussian in scale space.

e Each point is compared to its 8 neighbors in the current image and 9 neighbors each
in the scales above and below.

e For each max and min found, the output is the location and the scale: this is a
candidate keypoint.

Similar to Harris? While in Harris (keypoint location) the keypoint is identified in the
image plane as local maximum of the corner function, in SIFT the kexpoint is a local
minimum or maximum of the DoG image in both position and scale.
Implementation:

1. The initial image is incrementally convolved with Gaussians G(ko) to produce
images separated by a constant factor k in scale space.

(a) The initial Gaussian G(¢) has o = 1.6.
(b) k is chosen such that k = 25, where s in an integer (typically s = 3).

(c) For efficiency reasons, when k reaches 2, the image is downsampled by a factor
of 2 and then the procedure is repeated up to 4 or 6 octaves (pyramid levels).

2. Adjacent image scales are then subtracted to produce the difference-of-Gaussian
(DoG) images.

27



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017
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Figure 8: Difference of Gaussian.

Summary
e An approach to detect and describe regions of interest in an image.

e SIFT detector = DoG detector.

e SIFT features are reasonably invariant to changes in rotation, scaling, and changes
in viewpoint (up to 60deg) and illumination.

e Real time but still slow (10Hz on an i7 laptop).
The repeatability can be expressed as

number of correspondences detected
number correspondences present

(64)

The highest repeatability is obtained when sampling 3 scales per octave.
Influence of Number of Orientation and NUmber of Sub-Patches: Single orien-

tation histogram is poor at discriminating, but the results continue to improve up to a
4x4 array of histograms with 8 orientations.

e Descriptor: 4x4x8 = 128-element 1D vector.

e Location: 2D vector.
e Scale of the patch. 1 scalar value.

e Orientation (angle of the patch). 1 scalar value.
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SIFT for object recognition

Can be simply implemented by returning as best object match the one with the largest
number of correspondences with the template (object to detect). 4 or 5 point RANSAC
can be used to remove outliers.

Feature Matching

Given a feature I;, how to find the best match in I5?

1. Define distance function that compares two descriptors ((Z)SSD,SAD,NCC, or Ham-
ming distance for binary descriptors (e.g. Census, BRIEF, BRISK).

2. Brute-force matching:

e Test all the features in I5.
e Take the one at min distance.
Issues with closest descriptor: Can give good scores to very ambiguous (bad) matches

(curse of dimensionality). A better approach would be to compute the ratio of distances
between the first and second match:

d(f1)
d(f2)

< Threshold (usually 0.8), (65)

where

d(f1) is the distance of the closest neighbor

d(f2) is the distance of the second closest neighbor (66)
Explanation for distance ratio: In SIF'T, the nerest neighbor is defined as the keypoint
with minimum euclidean distance. However, many features from an image 1 may not have
any correct match in image 2 because they arise from background cluttere or were not
detected at all in the image 1. An effective measure is otained by comparing the distance
of the closest neighbor to that of the second closest neighbor. Why? Correct matches
need to have the closest neighbor significantly closer than the closest incorrect match, to
achieve reliable matching. Moreover, for false matches, there will likely be a number of
other false matches within similar distances due to the high dimensionality of the feature
space. (aka curse of dimensionality). We can think of the second closest match as
providing an estimate of the density of false matches within this portion of the feature
space, and at the same time identifying specific instances of feature ambiguity.
Why 0.87

e Eliminates 90% of the false matches,

e Discards less than 5% of the correct matches.

SURF (Speeded Up Robust Features)

e Based on ideas similar to SIFT.

e Approximated computation for detection and descriptor using box filters.
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e Results are comparable with SIFT but

— Faster computation and

— Shorter descriptors.

FAST detector (Features from Accelerated Segment Test)

e Studies intensity of pixels around candidate pixel C.
e (' is FAST corner if a set on /N contiguous pixels on circle are

— all brighter than intensity(C') + threshold or
— all darker than intensity(C) + threshold.

e Typically tests for 9 contiguous pixels in a 16 pixel circumference.

e Very fast detector (100 Mega pixel/second).

BRIEF descriptor (Binary Robust Independent Elementary Features)
e Goal: high speed.

e Binary descriptor formation

— Smooth image,

— For each detected keypoint (e.g. with FAST) sample 256 intensity pairs
(pt,py), i = 1 — 256 within a squared patch around keypoint.

— Create an empty 256-element descriptor.
— For each i-th pair:

x if Iy <1, then set i-th bit of descriptor to 1.
x else to 0.

e The pattern is generated randomly (or by ML) only once: then, same pattern
is used for all patches.

e Pros: Binary Descriptor allows very fast Hamming distance matching: count the
number of bits that are different in the descriptors matched.

e Cons: Not scale/rotation invariant.

ORB descriptor (Oriented FAST and Rotated BRIEF)
e Keypoint detector based on FAST.

e BRIEF descriptors are steered(?) according to keypoint orientation (to provide
rotation invariance).

e Good binary features are learned by minimizing the correlation on a set of training
patches.
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BRISK descriptor (Binary Robust Invariant Scalable Keypoints)

Binary: formed by pairwise intensity comparisons.

Pattern defines intensity comparisons in the keypoint neighborhood.
Red circles: size of the smoothing kernel applied.

Blue circles: smoothed pixel values used.

Compare short- and long-distance pairs for orientation assignment and descriptor
formation.

Detector and descriptor speed: circa 10 times faster than SURF.

Slower than BRIEF, but scale- and rotation- invariant.

Recap Table

Descriptor that Localization Relocalization & Loop
can be used Accuracy of the closing
detector
Harris Patch bt + 4+
SIFT ++++t +
BRIEF +++ ++4+
ORB +++ et
BRISK +++ +++
Shi-Tomasi Patch ++++ + ++
SIFT +++++ +
BRIEF +++ 4+
ORB +Htt bt
BRISK ++ 4
FAST Patch ++++ +++ ++4+4+
SIFT +hbt+ +
BRIEF +++ ++4+4+
ORB ++++ ++++
BRISK +++ +4+4+
SIFT SIFT +++ ++++ +
SURF SURF +++ ettt ++

Figure 9: Recap for detectors and descriptors.

Things to remember

Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform.
Point feature detection:

— Properties and invariance to transformations: Challenges are rotation, scale,
view-point and illumination changes.

— Extraction:
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x Moravec

x Harris and Shi-Tomasi: rotation invariance.
— Automatic Scale Detection
— Descriptor

* Intensity patches:

- Canonical representation: how to make them invariant to transforma-
tions: rotation, scale, illumination and view point (affine).

* Better solution: Histogram of oriented gradients: SIFT descriptor.
— Matching:
x (Z)SSD, SAD, NCC, Hamming distance (last one only for binary descrip-

tors), ration first/second closest descriptor.

— Depending on the task, you may want to trade off repeatability and robust-
ness for speed: approximated solutions, combinations of efficient detectors and
descriptors.

x Fast corner detector,
x Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK.
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Lecture 07: Multiple View Geometry 1

We have different problem statements:
e 3D reconstruction from multiple views

— Assumption: K,T, R are known.

— Goal: Recover the 3D structure from images.
e Structure from motion

— Assumption: K,T, R are unknown.
— Goal: Recover simultaneously 3D scene structure and camera poses (up to
scale) from multiple images.
For a 2-view geometry, we can define the same problems as

e Depth from stereo (stereo vision)

— Assumption: K,T, R are known.

— Goal: Recover the 3D structure from images.
e 2-view structure from motion

— Assumption: K,T, R are unknown.

— Goal: Recover simultaneously 3D scene structure and camera poses (up to
scale) and intrinsic parameters from two different views of the scene.

Depth from stereo

From a single camera, we can only compute the ray on which each image point lies. With
a stereo camera (binocular), we can solve for the intersection of the rays and eventually
recover the 3D structure.

The human binocular system

Stereopsys: the brain allows us to see the left and right retinal images as a single 3D
image. The images project on our retina up-side-down but our brains let us perceive them
as straight. Radial distortion is removed. This process is also known as rectification.
The distance of two seen images is called disparity (allows us to perceive the depth, i.e.
the smaller the disparity, the farther the object). An application of this concept are
stereograms.

Another applications is stereo photography, stereo viewers: Take two pictures of the same
subject from two different viewpoints and display them so that each eye sees only one of
the images.
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Stereo Vision: basics
The basic principle behind stereo vision is triangulation.

e Gives reconstruction as intersection of two rays.

e Requires camera pose (calibration) and point correspondence (matching
pairing points of the two images which are the projection of the same point in the
scene).

There are basically two cases

1. Simplified case: identical cameras are aligned.

2. General case: different cameras are not aligned.

Simplified Case

Z P =(X,Y.,7,)

N

Left Image =
f \ 4

O
CI
&
<

Right Image

P
\

Figure 10: Simplified case for stereo vision.

The two cameras are identical, meaning that they have the same focal length, and are
aligned with the z-axis. If we have a world point P,, a distance from the axis to the point
Zp, a distance between the cameras b and focal length f, we can use similar triangles
from Figure 10 and get

S

Zr  Xp
f o — Uy

Zp b—Xp (67)

-b

= Xp = il
Uy — Uy

b-
:>Zp: f .
U — Uy

The difference u; — u, is called disparity: difference in image location of the projection
of a 3D point on two image planes. (QUESTIONS)
Observation from this equation are
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e Distance is inversely proportional to disparity: the distance to near objects can be
measured more accurately than that to distant objects.

e Disparity is proportional to b. For a given disparity error, the accuracy of depth
estimate increases with increasing baseline b.

e As b is increased, since the distance of the two cameras is increased, some objects
may appear in one camera but not in the other (field of view of cameras). These
objects won’t have disparity.

e If the baseline b is unknown it is possible to reconstruct the scene up to a scale
(structure from motion!)

What is the optimal baseline?
e Too small:

— Large depth error

— Quantification of error as a function of the disparity?
e Too large:

— Minimum measurable distance increases.

— Difficult search problem for close objects.

General Case: triangulation

In reality no cameras are identical and aligning both cameras on a horizontal axis is
impossible. Why?

e There will always be differences in focal lengths due to manufacturing.

e The internal orientation of the CCD (elements which accumulate charge) in the
camera package is unknown, theoretically orientated, but not in reality.

. In order to be able to use a stereo camera, we need to compute
e The extrinsic parameters (relative rotation and translation)

e the intrinsic parameters (focal length, optical center, radial distortion of each cam-
era).

In order to do this we use calibration methods (Tsai or homographies). How do we get
the relative pose? Lines do not always interset in the 3D space: we want to minimize
the error. For the two cameras we have

u Xy Uy X
]51 B )\l . (Y B Kl . Yw 5 ﬁr = /\7« . Ur = KT -R- Yw + T. (68)
1 Z 1 Zw
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Triangulation: The problem of determining the 3D position of a point given a set of
corresponding image locations and known camera poses.
In order to triangulate, we use least-squares approximation:

U Xu
1
M- v ]| =K -[1]0]- SZ/“’ = Mp1=DM;-P left camera.
1 w
1
69
u M (69
2
A [va | =K-[R|T]- }Z/w = \opo = My - P right camera.
1 w
1

We solve for P and get a system A - (il) = b, which cannot be inverted (A is 3 x 2). We
2

use pseudoinverse approximation (least squares) and get
T A1 T At T —1 4T
AT A =A b= =(A"-A) A" - (70)

Remark. This is a problem with 6 equations and 5 unknowns: the 3 element of the
coordinates of the world point and the two depth factors A\, As.

Interpretation: Given the projections p; 2 of a 3D point P in two or more images, we
want to find the coordinates of the 3D point by intersecting the two rays corresponding
to the projections. We want to find the shortest segment connecting the two viewing rays
and let P be the midpoint of the segment. The two rays won’t meet exactly because of
noise and numerical errors.

Triangulation: nonlinear approach

We want to find P that minimizes the sum of squared reprojection error
SSRE:d2(p1,7T1<P))+d2(p2,7T2(P)), (71)

where

d(pr, m(P)) = ||p1 — m(P)]| (72)
is called reprojection error. The observed point is p;, ps and the reprojected one is
My P, MyP. In practice, this is done by initializing P using linear approach and then
minimize SSRE using Gauss-Newton of Levenberg-Marquardst.

Correspondence Problem

Given a point p in a first image, where is its corresponding point p’ in the right image?
Correspondence Search: Identify image patches in the left and in the right images,
corresponding to the same scene structure. Similarity measures:

e (Z)ZNCC
e (Z)SSD
e (Z)SAD
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e Census Transform

Problem: Exhaustive image search can be computationally very expensive! Can we do
that in 1D?
— potential matches for p have to lie on the corresponding epipolar line [’

e The epipolar line is the projection of the infinite ray 7—!(p) corresponding to p
in the other camera image. Since 7(p) = MK, 7(p)~* = MK ~'p. This makes sense:
if we observe a projection p; in the left camera, this can correspond to each world
point lying on the infinite ray (every one of these points would project into py). All
these points have a different projection on the right camera, which in 2D forms the
epipolar line.

e The epipole is the projection of the optical center on the other camera image.

e A stereo camera has two epipoles!

n~l(p)=AK"1p

I’ = epipolar line

e = epipoles

Figure 11: Epipolar lines and epipoles.

The Epipolar Constraint

e The epipolar plane is uniquely defined by the two optical centers Cj, C, and one
image point p.

e The epipolar constraint constraints the location, in the second view, of the cor-
responding point to a given point in the first view.

e = This reduces the search to 1D problem along conjugate epipolar lines.

Example: converging cameras

Important: All epipolar lines intersect at the epipole! As the position od the 3D point
varies, the epipolar line rotates about the baseline.
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Example: identical and horizontally-aligned cameras

e and €’ at infinity

Example: forward motion

Epipoles have the same coordinates in both images: points move along lines radiating
from e: Focus of expansion

Stereo Rectification

e Even in commercial stereo cameras, left and right images are not aligned.
e [t is convenient if image scanlines are the epipolar lines

e Stereo rectification warps left and right images into new rectified images, whose
epipolar lines are aligned to the baseline.

'’

\\.

e

46

Figure 12: Stereo Rectification.

e Reprojects image planes onto a common plane parallel to the baseline.
e It works by computing two homographies, one for each input image reprojection.

e = Then, scanlines are aligned and epipolar lines are horizontal.

Idea: we define two new Perspective Projection Matrices obtained by rotating the old ones
around their optical centers, until focal planes become coplanar (containing the baseline).
This ensures epipoles at infinity. In order to have horizontal epipolar lines, the baseline
should be parallel to the new X axis of both cameras. Moreover, corresponding points
should have the same vertical coordinate. This is obtained by having same intrinsic
parameters for the new cameras. Since the the focal length is the same, the new image
planes are coplanar. PPMs are the same as the old cameras, whereas the new orientation
(the same for both cameras) differs from the old ones by suitable rotations. For both
cameras, intrinsic parameters are the same.
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Implementation

1. The perspective equation for a point in the world is

- X
a u v

image point =p= |0 | =X |v | = K[R|T]- Zw (73)
w 1 1w

This can be rewritten in a more convenient way by considering [R|T] as the trans-
formation from the world to the Camera frame (7" expressed as C'):

U Xy
Mo|l=K-R' [V ]-C (74)
1 Z

2. We can then write the Perspective Equation for the Left and Right cameras: we
assume for generality that they have the same intrinsic parameters:

ur, Xw
Aoy | =K, - RZI . Yo | —CpL left camera
1 Zw (75)
UR Xw
Ar- | vr | =Kg- ngl . Yo | —Ckgr right camera
1 Zw

3. The goal of stereo rectification is to warp left and right camera images such that
their focal planes are coplanar and the intrinsic parameters are identical. It follows

uy, Xw . ur, . Xw
Moo | =K RV | Yo | -Co)l =M =K-R - || YW ] —-Cy
1 Zw 1 Zw
URr Xw _ ug - —1 Xw
Mp- | vr | = Kr- Rg'- Yo | -Cr| = Xg-|Ur| =K -R - Yo | —Cgr
1 Z 1 Z
(76)
X
4. By solving for | Y,, | for each camera, we can compute the Homography (or warp-
Zy
ing) that needs to be applied to rectify each camera image:
B ur, . ur,
)\L‘ v, :ALKR_RLKil vr,
_1 homograph;rleft camera 1 (77)
_ UR _ UR
M- |Pr| =X - K-R -Rp-Ky'|or
1 ; ~\1

~
homography right camera
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5. The new K, R can be chosen as

7 KL+ Kz
N 2 (78)

R = [F17F2773]7

where 71,79, T3 are the column vectors of R. These can be computed as

G =0y
||C2 — 1]
T9 = rg X 71 where rs is the third column of Ry,

T
(79)
T3 =71 X To.

For more details have a look at A compact alg. for rectification of stereo pairs.
Example: First, you remove the radial distortion (use e.g. bilinear interpolation). Then,
compute homographies and rectify (bilinear interpolation).

If the images are rectified, we can perform the correspondence search along the same
scanlines!
In order to solve the correspondence problem, we want to average noise effects. One can

use a window around the point of interest and use similarity measures to find neighbor-
hoods (these should be similar in intensity patterns).

Correlation-based window matching

e Problem: textureless regions (aperture problem), high ambiguity! Solution:
increase window size to distinguish!

— Smaller window: more detail but more noise!

— Larger window: smoother disparity maps but less detail

Disparity Map

A disparity map apear as a grayscale image where the intensity of every pixel point is
proportional to the disparity of that pixel in the left and right image: objects that are
closer to the camera appear lighter, whiler farther objects appear darker. Input to dense
3D reconstruction

1. For each pixel in the left image, find its corresponding point in the right image.
2. Compute the disparity for each pair of correspondences.
3. Visualized in gray-scale or color coded image.

Close objects experience bigger disparity. They appear brighter in disparity map. The
depth Z can be computed from the disparity by recalling that

bf

Uy — Up

Zp =

(80)
This is really useful for obstacle avoidance. Challenges include: occlusion, repetition, non-

lambertian surfaces (specularities), textureless surfaces. This is important for obstacle
avoidance.
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Improvements:

Multiple matches could satisfy the epipolar constraint. A good way to address the problem
would be to have

e Uniqueness: only one match in right image for every point in left image.
e Ordering: points on same surface will be in same order in both views
e Disparity gradient: disparity changes smoothly between points on the same surface.

Sparse Stereo Correspondence restrict search to sparse set.
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Lecture 08 - Multiple View Geometry 2

Two-view Structure from Motion

The camera relative pose is unknown: this is e.g. the case when the two images are taken
from the same camera but at different times and positions.

Problem formulation: Given n point correspondences between two images, {p| =
(ui,vi), ph = (ub,vs)}, simultaneously estimate the 3D points P!, the camera relative-
motion parameters (R, T), and the camera intrinsics K7, K, that satisfy:

X,
1 Yy
Moo | =m0 | |
1 1“’
. 81
v (81)
2 Y
Ay vy | = Ka- [RIT]-| 7
1 1“’
We have two cases then:
Calibrated Cameras (K7, K; known)
For convenience, we use normalized 1tmage coordinates
U U
v|=K*'|v]|. (82)
1 1
We want to find R, T, P which satisfy
; X,
1 i
i Y,
oo | = | |
1 w
1
A 83
) v (89)
2 Yy
1 1“’

Scale Ambiguity: If we rescale the entire scene by a constant factor (i.e. similarity
transformation), the projections (in pixels) of the scene points in both images remain the
same (because the angles remain the same).

e In monocular vision it is not possible to recover the absolute scale of the scene.
e In stereo vision, only 5 degrees of freedom are measurable:

— 3 parameters to describe the rotation.

— 2 parameters for the translation up to a scale (we can only compute the
direction of translation but not its length (magnitude)).
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How many knowns and unknowns?
e 4n knowns: n correspondences, each one (u},v}) and (ub,vi), i =1,...,n.

e 5+ 3n unknowns: 5 for the motion up to a scale (3 rotation and 2 translation) and
3n which is the number of coordinates of the n 3D points.

It should hold

dn > 54 3n

(84)
=n > 5.

The first analytical solution for 5 points was given by Kruppa in 1913 (10 degree order

polynomial, up to 10 solution with complex ones).

Let’s define the cross product as a matrix multiplication

axb=1a 0 —a;]|-|b,|=]a],-b (85)
—Qy Ay 0 b,
Epipolar Geometry
Uy Ug
pr=1vi], p2= |02 (86)
1 1

We can observe that pq, ps, T are coplanar:

py n=0
py - (Txpy) =0
py - (T'x (Rp1)) =0
Pg [T Rp1 =0
pt - E-p; =0 is the epipolar constraint, where £ = [T], - R is the essential matrix.
(87)

This is also called the Longuet-Higgins equation. Applying the constraints results in four
different solutions for R and T'.

P

epipolar plane T
n

T

Figure 13: Epipolar constraint
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How to compute the Essential Matrix

Kruppa’s solution (with at least 5 correspondences) is not efficient. In 1996, Philipp pro-
posed an iterative solution. In 2004, the first efficient non iterative solution was proposed.
This uses Groebner Decomposition. The first popular solution uses 8 points and is
called the 8 point algorithm or Longuet-Higgins algorithm (still used in NASA
rovers).

The 8-point Algorithm

The Essential matrix is defined by
Py -E-pr=0. (88)

Each pair of point correspondences provides a linear equation. For n points we can write

€11

€12
=1, =1 =1 =1 =1 =1 =21 =1, =1 =1 =1 =1 €13
Uy - U] Uy V] Uy Dy Uy Uy V] Uy U 07 1 .
=2 22 =22 22 =22 =2 =2 22 22 =2 =2 =2 21
Uy - Uy Uy -V U; V5 -uy UV -07 U5 uy vy 1

€22 =0 (89)

. . : : : €93
—n (Rt =t (N S S ¢ S ¢ M= S () n o =n
NG -~ >
Q (known) €32
€33
_ v
E unknown
This problem can be written as
Q-E=0. (90)

Two types of solution
e Minimal Solution

— Quxo should have rank 8 to have unique (up to scale) non trivial solution E.
— Each point correspondence provides 1 independent equation.

— Thus, 8 point correspondences are needed.
e Over-determined Solution

— n > 8 points.

— A solution is to minimize ||@Q - E||? subject to the constraint ||E||> = 1. The
solution is the eigenvector corresponding to the smallest eigenvalue of matrix

Q- Q.

— This can be solved with Singular Value Decomposition.

e Degenerate Solution if 3D points are coplanar. There is the 5 point algorithm
which holds also for coplanar points.

44



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017

Interpretation

With the algorithm we try to minimize the algebraic error

N
> s By, (91)
=1
where
Py - E-pr=||p2|| - ||E - pul] - cos(6) (92)

which is not zero is p1, po, T" are not coplanar. When extracting solutions, four results are
available. We look only at results with points in front of both cameras (Cheirality

Constraint).

Uncalibrated Cameras (K3, K5 unknown)

It holds
Py E-p1=0, (93)
where A , A ,
(] ug C s
vt | =Kl |, e =Kl (94)
1 1 1 1

By rewriting the constraint, one obtains

ug) " uj
vi | KT E-KU [0l ] =0
1 1
o | (95)
Usy uy
vl CF- vl | =0,
1 1
where [ is the fundamental matrix, which can be computed as
F=K,T FE-K'=K," [T, -R-K{" (96)

The same 8-point algorithm can be used to compute the fundamental matrix:

S
2
Z1 =1 =1 51 21 =1 =1 =1 =1 =1 21 =1 13
Uy -Up Uy V] Uy Vy-Up Uy 07 Uy wp V7 1 ;
uy-ui uy-v; uy U3-uy Us-v; 05w v 1 21
2 Uy Uy Up Uy Uy-Up Uty Uy Uy Uy ¥ 0 (97)
2| =
uy - uy uy - v7 us vy -up vy .07 vy ouy vp 1 fa
2 %1 2 Y1 2 Y27t Y2001 o 1“1 f31
A ~ >y
Q@ (known) f32
Jss
——

F unknown

There are orders of magnitude of difference, which leads to poor results with least-
squares. How to solve?
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Normalized 8-point algorithm

This estimates the Fundamental matrix on a set of Normalized correspondences (with
better numerical properties) and then unnormalizes the result to obtain the fundamental
matrix for the original given correspondences.

Idea: Transform image coordinates so that they are in the range [—1,1] x [-1,1]. One
way is to apply the following rescaling and shift A more popular is to rescale the two

0,0 700,0 -1,-1 1,-1
00 (700,0) 2, (-1,-1) (1-1)
700
2 —_
A 500

v
9|

(0,500) (700,500) (-1,1) (1,1)

Figure 14: Shift for normalized algorithm.

point sets such that the centroid of each is 0 and the mean standard deviation v/2. This
can be done for every point as follows

=2 (p - 98
p=— (p' — p), (98)
where
1 e .
- i 99
1 N;p (99)

is the centroid of the set and o = + >, ||p* — p||* is the mean standard deviation. This
transformation can be expressed in matrix form

e AN
' = | 0o \/75 _\/Ti,uy -p'. (100)
0 0 1

The algoritm at the end reads
1. Normalize point correspondences: p; = By - p1, P2 = Bs - po.
2. Estimate [ using normalized coordinates pi, po.
3. Compute F from ol
Py - Fpr=0
py By - F -By-p =0 (101)
= F=B] F B
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Error Measures

The quality of the estimated fundamental matrix can be measured by looking at cost
functions. The first is defined using the Epipolar Constraint

N
err=> (py - E-p})’ (102)
i=1

This error will exactly be 0 if computed from 8 points. For more points not 0 because of
image noise/outliers. Better methods are
Directional Error

Sum of the angular distances to the Epipolar plane: err = > (cos(6;))?, where

T
Y% -E-p )
cos(0) = 103

©) (HPQTH'HE-M (103)

Epipolar Line Distance

Squared Epipolar-Line-to-point Distances

N
err =Y d*(p}, 1§) + d*(ph, 15). (104)

=1

Cheaper than reprojection error: does not require point triangulation!

llesz

G

Figure 15: Epipolar Line Distance.

Reprojection Error

Sum of the Squared Reprojection Errors

N
err = |Ip = m(P)|P + Iph — m(P', R, T)||? (105)

i=1

Computation is expensive because of point triangulation, but is the most accurate!
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/ How to compute P? See Slide
P=? 28 of past lecture

R. T

Figure 16: Reprojection Error.

Robust Structure From Motion

Matched points are usually contaminated by outliers. Causes for this are
e Change in view point and illumination
e Image noise
e Occlusions
e Blur

The task of removing them is for Robust Estimation. Since error is integrating over
time, this increases and is really bad.

RANSAC (Random Sample Consensus)

Ransac is the standard method for model fitting in the presence of outliers (noise
points or wrong data). It can be applied to all problems where the goal is to estimate
parameters of a model from the data. An easy example is RANSAC for line fitting:

1. Select sample of 2 points at random.

2. Calculate model parameters that fit the data in the sample.

3. Calculate error function for each data point.

4. Select data that supports current hypothesis.

5. Repeat.

6. Select the set with the maximum number of inliers obtained within k iterations.

How many iterations? All pairwise combinations : This is computationally
unfeasible if V is too large. With a probabilistic approach, one can reduce this:

Let w be the number of inliers/ N, N be the total number of data points. We can think
of w as

N-(N-1)
—s—.

w = P(selecting an inlier-point out of the dataset). (106)
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We assume that the 2 points necessary to estimate a line are selected independently, i.e.

2

w* = P(both selected points are inliers) (107)
1 — w? = P(at least one of these two points is outlier)
Let £ indicate the number of RANSAC iterations so far, then
(1 —w?*)* = P(RANSAC never selected two points both inliers) (108)
Let p be the probability of success:
1-p=(1-w
log(1 —p) (109)

k= .
~ log(1 — w?)

Remark. Think of having p = 0.99 and w = 0.5, then k£ = 16, which is damatically fewer
than all combinations. The number of points does not influence that!.

RANSAC applied to general model fitting is
1. Initial: let A be a set of N points.
2. Repeat.
3. Randomly select a sample of s points from A.
4. Fit a model from the s points.
5. Compute the distances of all other points from this model.
6. Construct the inlier set (i.e. count the number of points whose distance is < d).
7. Store these inliers.
8. Until maximum number of iterations k is reached.
9. The set with the maximum number of inliers is chosen as solution to the problem.

. log(1—p)
log(1 — w®)
In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients

(110)

a) What’s the model in SFM? — the Essential Matrix (for calibrated cameras) or the
Fundamental Matrix (for uncalibrated cameras). Alternatively, R and T'.

b) What’s the minimum number of points to estimate the model? — We know that
5 points is the theoretical minimum number of points. However, 8-point algorithm,
then 8 is the minimum.

¢) How do we compute the distance of a point from the model. — We can use the
epipolar constraint to measure how well a point correspondence verifies the model E
or F, respectively. However, the Directional error, the Epipolar line distance, or
the Reprojection error (even better) are used.
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1. Randomly select 8 point correspondences.
2. Fit the model to all other points and count the inliers.
3. Repeat from 1 for k times.
With s points
_ log(1—p)
log(1 — (1— )

Remark. No 6 DOF estimation for the 2-point RANSAC. £ increases exponentially with
the fraction of outliers ¢.

(111)

e As observed, k is exponential in the number of points s necessary to estimate the
model. We can see that k increases exponentially with the fraction of outliers ¢.

e The 8-point algorithm is extremely simple and was very successful; however it re-
quires more than 1177 iterations.

e The 5-point algorithm only requires 145 iterations, but can return up to 10 solutions

of E.

Can we use less than 5 points? With planar motion

Planar Motion

Planar motion is described by three parameters ¥, ¢, p

cos(f) —sin(d) 0 pcos(yp)
R=[sin(d) cos(@) 0], T = | psin(y) (112)
0 0 1 0

Let’s compute the Epipolar Geometry

E=[T. R
0 0 psin(p) cos(f) —sin(d) 0
= 0 0 —pcos(ip) sin(f)  cos(f) 0
—psin(p) pcos(p) 0 0 0 1 (113)
0 0 psin(p)
= 0 0 —pcos(ip)
—psin(e —6) pcos(e —0) 0
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E has 2 DoF (0, ¢), because p is the scale factor. Thus, 2 correspondences are sufficient
to estimate them.

But: can we use less than 2 point correspondences? Yes, if we exploid wheeled vehicles
with non-holonomic constraints. Wheeled vehicles like cars, follow locally-planar circu-
lar motion about the instantaneous Center of Rotation (ICR). Since ¢ = /2, meaning
that we have only 1 DoF. Only 1 point correspondence is needed. This is the small-
est parametrization possible and results in the most efficient algorithm for
removing outliers (Scaramuzza). This updates the problem to be

cos(f) —sin(d) 0 pcos(9)

R = [sin(d) cos(d) 0], T = | psin(9) (114)
0 0 1 0
and
E=[T. R
0 0 psin(%) 115
= 0 0 —pcos(%) (115)
psin(4) —pcos(%) 0

With the Epipolar Geometry constraint leads to

= —2tan"! (Uz - ”1) . (116)

U2+U1

Only one iteration: compute 6 for every point correspondence. Up to 1000 Hz, 1-point
RANSAC in only used to find the inliers. Motion is then estimated from them in 6DOF.

ICR

[
i
1
1

0.7 0

\
bo - | O
Example of Ackerman steering principle Locally-planar circular motion

Figure 18: Non-holonomic.
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Lecture 09 - Multiple View Geometry 3
Bundle Adjustement (BA)

Nonlinear, simultaneous refinement of structure and motion (i.e. R, T, P%). It
is used after linear estimation of R and 7. This, computes R, T, P* by minimizing the
Sum of Squared Reprojection Errors:

N
(R> T, PZ) = argminR,T,Pi Z ||pzl - ﬂ-l(Pi’ Cl)||2 + ||p12 - 7T2(Pi7 CQ)H) (117)
i=1

where C7, Cy are the pose of the camera in the world frame. This can be minimized
using Lavenberg-Marquardt (more robust than Gauss-Newton to local minima). It is
better to initialize it close to the minimum. Same for multiple views!

Hierarchical SFM

1. Extract and match features between nearby frames.
2. Identify clusters consisting of 3 nearby frames:
3. Compute SFM for the 3 frames:

e Compute SFM between 1 and 2 and build pointcloud.
e Merge 3rd view running 3-point RANSAC between point cloud and 3rd view.

4. Merge clusters pairwise and refine (BA) both structure and motion.

Example is building Rome in one day.

Sequential SFM
With n views. Also called Visual Odometry (VO).

1. Initialize structure and motion from 2 views (bootstrapping).
2. For each additional view:

e Determine pose (localization).
e Extend structure (i.e. extract and triangulate new features).

e Refine both pose and structure (BA).

2D to 2D Motion from Image feature correspondences

e Both feature points f;_; and fj are specified in 2D.
e The minimal-case solution involves 5-point correspondences

e The solution is found by minimizing the reprojection error:
T — Rip—1 tep \ : i a2 118
k — 0 1 _a’rgmlnTkZ”pk—pk—lH : ( )
Popular algorithms: 8-/5-point.
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3D to 2D Motion from 3D structure and Image correspondences

e f._1is given in 3D, f; in 2D.

e This problem is known as camera resection or PnP (perspective from n
points).

e The minimal-case solution involves 3 correspondences (+1 for disam-
biguating the four solutions).

e The solution is found by minimizing the reprojection error:
7= (1 ) — argming g, 3 1lpk - (XL CIP (119)
k — 0 1 — a‘rgmlnXl,Ck P g y Yk .
ik

Popular algorithms: P3P.

3D to 3D Motion from 3D-3D Point correspondences (point cloud registration).

e Both f;_; and f; are specified in 3D. To do this, it is necessary to
triangulate 3D points (e.g. use a stereo camera).

e The minimal case-solution involves 3 non collinear correspondences

e The solution is found by minimizing the 3D-3D euclidean distance
T = (TRt ) areming SIX - T Xl (120)
k 0 1 Ty : k k k—111-
Popular algorithms: Arun 87, ICP, BA.

Case Study: Monocular Visual Odometry (one camera!)

Bootstrapping:
e Initialize structure and motion from 2 views: e.g. 8-point algorithm + RANSAC.
e Refine structure and motion (BA)

e How far should the frames be? If too small baseline, large depth uncertainty. If too
large baseline, small depth uncertainty.

e = One way to avoid this consists of skipping frames until average uncertainty of
the 3D points decreases below a certain threshold. The selected frames are called
keyframes. In general

keyframe distance

threshold (10 — 20%). 121
average-depth > threshold (10 = 20%) (121)

Remember the picture with ellipses which describe the depth uncertainty. If baseline
increases, the ellipses decrease in size.

Localization

e Compute camera pose from known 3D-to-2D feature correspondence.
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— Extract correspondences by solving for R and ¢ (K is known).

U Xu
Ao| =K R | (122)
1 1w

e What is the minimal number of required point correspondences

— 6 for linear solution (DLT algorithm).
— 3 for a non linear solution (P3P algorithm).
— 3 point RANSAC.

Extend Structure
e Extract and triangulate new features.

By denoting the relative motion between adjacent keyframes as

Ry, t
Tk _ ( kéﬁ 1 kikl) : (123)

we can concatenate transformations to find the full trajectory of the camera as
Cr =Thp—1-Cra (124)

A non-linear refinement (BA) over the last m poses (+visible structure) can be performed
to get a more accurate estimate of the local trajectory.

Loop Closure Detection (i.e. Place Recognition)

e Relocalization problem: during VO, tracking can be lost (due to occlusions, low
tecture, quick motion, illumination change).

e Solution is to re-localize camera pose and continue.
e Loop closing problem: when go back where you already have been:

— Loop detection: to avoid map duplication (e.g. same crossing rotated)

— Loop correction: to compensate the accumulated drift!

e In both cases places recognition is needed (lecture 12)

VO vs. Visual SLAM

e VO: Focus on incremental estimation/local consistency. VO sacrifies consistency
for real-time performance, without need to take into account all previous history of
the camera (as SLAM does).

e Visual VSLAM: Simultaneous Localizazion and mapping. Focus on globally con-
sistent estimation. Practically VO + loop detection + graph optimization.
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Feature-based Methods
1. Extract and match features (+RANSAC)

2. Minimize Reprojection Error:
Ty k-1 = argming Z || — 7 (po)|I5 (125)

Good: Large frame-to-frame motions, accuracy and efficient optimization of SFM

(BA).

Bad: Slow due to costly feature extraction and matching, matching outliers (RANSAC).
Direct Methods (all pixels)

1. Minimize photometric error:
Thos = avgming. 3 [|(ul) — Lo (w12 (126)
where

uy = 7(T - (7 (u;) - d)) (127)
Good: All information in the image can be exploited. Increasing camera frame-rate
reduces computational cost per frame.
Bad: Limited frame to frame motion. Joint optimization of dense structures and
motion too expensive.
ORB-SLAM
e Feature based:

— Fast corner + Oriented Rotated Brief descriptor.

— Binary descriptor.

— Very fast to compute and compare.

— Minimizes reprojection error.
e Includes:

— Loop closing.
— Relocalization.

— Final optimization.

e Real time: 30Hz

LSD-SLAM

e Direct based 4+ Semi-dense formulation:

— 3D geometry represented as semi dense depth maps.

— minimizes photometric error.
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— Separately optimizes poses and structures.
e Includes:

— Loop closing.
— Relocalization.

— Final optimization.

e Real time: 30Hz

DSO

e Direct based + sparse formulation:

— 3D geometry represented as sparse large gradients.
— Minimizes photometric error.
— Jointly optimizes poses and structures (sliding window).

— Incorporate photometric correction to compensate exposure time change

e Real time: 30Hz

SVO
e Direct based :

— Corners and edgelets.

— Frame to frame motion estimation.
e Feature based :

— Frame to Keyframe pose refinement.
e Mapping:

— Probabilistic depth estimation.

— Multi camera system

e 400 fps on i7 laptops, 100 fps on smartphone PC

Direct Methods: Dense, Semidense, Sparse: Dense and Semidense behave similarly.
Dense is only useful if one has motion blur and defocus.
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Lecture 10 - Dense 3D Reconstruction

For the 3D reconstruction from multiple views we assume that camera are calibrated
e intrinsically (K is known for each camera), and
e extrinsically (7 and R between cameras are known, for instance, from SFM).

For the multi-view stereo, we have as:

Input: calibrated images from several viewpoints.

Output: 3D object dense reconstruction.

Recall: The two camera centers and the image point p determine the epipolar plane,
which intersects each camera image plane in the epipolar lines. Since we use the epipolar
constraint, corresponding points only need to be searched along epipolar lines.

Dense Reconstruction

We want to estimate the structure from a dense region of pixels (hence not only from
corners). The workflow is:

1. Local methods: estimate depth for every pixel independently.

2. Global methods: refine the depth surface as a whole by enforcing smoothness
constraint.

We use the photometric error (SSD): this is derived for every combination of the
reference image and any further image. IDEA: optimal depth minizes the photometric
error in all images as a function of the depth in the first image.

Aggregated Photometric Error

The Dense reconstruction requires establishing dense correspondences. These are com-
puted basing on the photometric error (SSD between corresponding patches of intensity
values (min patch size: 1 x 1 pixels). Pros and cons of large and small patches?

e Small window: Pro: more detail, Cons: more noise.
e Large window: Pro: smoother disparity maps, Cons: less detail.

Not all the pixels can be matched reliably, due to viewpoint changes, occlusions. We
take advantage of many small baseline views, where high quality matching is possible.
Important facts:

e Repetitive texture shows multiple minima.

e The aggregated photometric error for flat regions and edges parallel to the epipolar
line show flat valleys (noise!).

e For distinctive features, the aggregated photometric error has one clear minimum.
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Disparity Space Image (DSI)

For a given image point (u,v) and for discrete depth hypotheses d, the aggregate photo-
metric error C'(u, v, d) with respect to the reference image I, can be stored in a volumetric
3D grid called the Disparity Space Image (DSI), where each voxel (group of u,v,d) has

value
Clu,v.d) =3 p (fk(uf, o', d) — I (u, U)) , (128)

where I, k(u',v', d) is the patch of intensity values in the k-th image centered on the pixel
(u',v") corresponding to the patch I,.(u,v) in the reference image I, an depth hypothesis
d. Furthermore p is the photometric error (SSD).

Solution to depth estimation problem

Is a function d(u,v) in the DSI that satisfies:

Minimum aggregated photometric error (i.e. argmingC')
AND (129)

Piecewise smooth (global methods)

Interpolating while not overfitting!
Global Methods: We formulate them in terms of energy minimization. The objective
is to find a surface d(u,v) that minimizes a global energy

—— ——
data term  regularization term
where
Ey(d) = C(u,v,d(u,v)) (131)
(u,0)
and
Ei(d) =) pa(d(u,v) = d(u+1,v)) + pa(d(u, v) — d(u, v+ 1)). (132)
(u,0)

pa is a norm (e.g. the Ly o or Huber norm). A controls the tradeoff data (regularization).
What happens as A increases? Higher smoothing!

Regularized depth maps

e The regularization term F,(d)

— Smooths non smooth surfaces (result of noisy measurements) as well as dis-
continuities.

— Fills the holes.

e Popular assumption: discontinuities in intensity coincide with discontinuities in

depth.

e Control smoothness penalties according to image gradient (discrete)
pa(d(u, v) —d(u+1,0)) - pr([H (u,v) = I(u+1,0)[]) (133)
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e p; is some monotically decreasing function of intensity differences: lower smooth-
ness cost for high intensity gradients (if there are high intensity gradients, you
don’t want to smooth them as they are a crucial information in your image.

Choosing the stereo baseline

What is the optimal baseline?
e Too small: large depth error.
e Too large: difficult search problem.

A possible approach is depth map fusion (different depth maps with different perspec-
tives gives a complete image).

GPGPU for Dense Reconstruction

General Purpose Computing on Graphics Processing Unit. Perform demanding calcula-
tions on the GPU instead of the CPU. We can run processes in parallel on thousands of
cores (CPU is optimized for serial processing). More transistors for data processing.

e Fast pixel processing (ray tracing, draw textures, shaded triangles,..)
e Fast matrix/vector operations (transform vertices)
e Programmable (shading, bump mapping)
e Floating-point support (accurate computations)
e Deep learning.
And
e Image processing

— Filtering and feature extractions (e.g. convolutions)

— Warping (e.g. epipolar rectification, homography).
e Multiple-view geometry

— Search for dense correspondences (pixel wise operations, matrix and vector
operations (epipolar geometry).

— Aggregated photometric error.
e Global Optimation
e Variational methods (i.e. regularization (smoothing)) (divergence computation)

Typically on consumer hardware: 1024 threads per multiprocessor, 30 multiprocessors:
30000 threads. CPU with 4 cores which supports 32 threads. High arithmetic intensity.
Have a look at Scaramuzza work!
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Lecture 11 - Tracking

Point Tracking

Problem: Given two images, estimate the motion of a pixel from image I, to image I;.
Two approaches exist, depending on the amount of motion between the frames:

e Block-based methods
e Differential methods

Template Tracking Given two images, estimate the warping that defines the motion
and/or the distortion of a template from image Iy to image 1.
Block-based methods

e Search for the corresponding patch in a neighborhood around the point.

e Use SSD, SAD, NCC to search for corresponding patches in a local neighborhood
of the point. The search region usially is a D x D squared patches. We have to
perform D x D comparisons, computationally demanding.

Differential Methods

e Look at the local brightness changes at the same location. NO patch shift is

performed. (centered in the same point!)
Spatial Coherency

We assume that all the pixels in the patch undergo the same motion (same u and v).
Also, assume that the time interval between the two images Iy and I; is small. We want
to find the motion vector (u,v) that minimizes the Sum of Squared Differences (SSD). As
we did for Harris, we look at the first order Taylor approximation of the sum:

SSD = "(Io(z,y) = L(z + u,y +v))?
~ Z([o(:z:,y) —L(z,y) — L -u—1,-v)° (134)
=Y (AT =1, -u—1I,-v),

which is a simple quadratic function in two variables (u,v).

Motion Vector
To minimize the E, we differentiate with respect to (u,v) and equate to 0.
1))
=0= 2L, (AI-I-u—1I,-v)=0

u (135)

E
%—U—O:>—2IyZ(AI—Ix~u—Iy-v)—0
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Linear system of two equations in two unknowns. We can write this in matrix form

(Srn si) ()= (E05)

(1)=& 52?2:% o) (&) (130

N J/

M

These are not matrix products, but pixel-wise products! For M to be invertible, its
determinant should be non 0. From the decomposition

M=R"1. (Aol A02> ‘R, (137)

we know that det(M) is non zero when its eigenvalues are large (i.e. not a flat region and
not an edge. In practice, it should be a corner or in general contain texture.
Aperture Problem

If we look at local brightness changes through a small aperture, we cannot always deter-
mine the motion direction, becuase infinite motion directions (solutions) may exist. The
solution is to increase the aperture size.

Application of Differential Methods: Optical Flow

Optical flow is the pattern of appearent motion of objects in a visual scene, caused by the
relative motion between the observer (eye or camera) and the scene. It tracks the motion
of every pixel between two consecutive frames. For each pixel, we compute

e The vector direction and,
e The vector length (amount of movement).

An issue could be the choice of the right patch size.

Block-based vs. Differential Methods

Block-based Methods: search for the corresponding patch in a neighborhood of the
point to be tracked. The search region is usually a square of n x n pixels.

e +: robust to large motions
e -: Can be computationally expensive (n x n comparisons for a single point track)
Differential Methods:

e +: Much more efficient than block-based methods. Thus, can be used to track the
motion of every pixel in the image. It avoids searching in the neighborhood of the
point by analyzing the local intensity changes of an image patch at a specific
location (no search is performed).

e -: Works only for small motions (high frame rate). For larger motion, multiscale
implementations are used, but are then expensive.
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Transformations

e Translation: 2 DOF
r+a 1 0 «a .
_ 1) _ 1)
W(z,p) = <y+a2) = (o ) @) g{ . (138)
e Euclidean: 3 DOF

W(x’p):(xcos(a)—ysin(oz)—i—m):<cos(a) sin(a) al)_ ;”  39)

zsin(a) + ycos(a) + as sin(a) cos(a) as 1
e Affine: 6 DOF

X
W (z,p) = <G1$+“3y+“5> - (@1 = a5> Ay]. (140)

Ao + aqgy + ag as Q4 ag

e Projective (homography): 8 DOF
o a1 + axy + as

 artagy+1°
;4T + asy + ag

C artagy+1°

(141)

Recalling that the Jacobian of a function

fl(arl,xg, Ce ,l’n)
F(xy,z9,...,2,) = : (142)
fm(x17x27 .. l'n>

is
of1 of1

J(F)=VF = : (143)

Ofn Ofn
or1 7" Oxn

Template Tracking

Follow a template image in a video sequence by estimating the warp. Basically, we track
the distortion function.

Problem Formulation

Template Warping Given the template image T'(z), take all the pixels from the template
image and warp them using the function W (z,p) parameterized in terms of parameters
p. The goal of template-based tracking is to find the set of warp parameters p such that

I(W(z,p)) =T(z). (144)
This is solved by determining p that minimizes the Sum of Squared Differences
E=8SD =Y [I(W(x,p) - T(x)]. (145)
zeT

Assumptions are:
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e No errors in the template image boundaries: only the appearance of the object to

be tracket appears in the template image.

e No occlusion: the entire template is visible in input image.

e Brightness consistency assumption: the intensity of the object appearance is always

the same across different views.

Lucas-Kanade Tracker

Uses the Gauss-Newton method for minimization, i.e.
e Applies a first order approximation of the warp,
e Attempts to minimize the SSD iteratively.

Derivation: Starting from

E=S85D =" [I(W(x,p) - T(2)]*,

zeT

(146)

we assume that an initial estimate of p is known. Then, we want to find the increment

Ap that minimizes

> (W (w,p+ Ap)) — T(@)].

zeT

The first order Taylor approximation of the term in brackets reads

ow
I(W(z,p+ Ap)) = I(W(z,p)) + VI, Ap
By replacing that in the equation we get
oW 2
E= I—Ap—T :
> |10 ) + VI Ap = T

zeT

In order to minimize it, we differentiate and equate to 0, i.e.

oE
dAp
It holds
oF
9ap "
22 (V1% ) [r0vGenn + 15 ap - 70| =0
Ao =1 (V1) (1) = 10V ),

zeT

(147)

(148)

(149)

(150)

(151)

T
where H =3 . (VI %—?) (VI %) is the second moment matrix of the warped image

(Hessian). So, the algorithm reads
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1. Warp I(x) with W (x,p).
2. Compute the error.

3. Compute warped gradients, VI evaluated at W (z,p).

e~

Evaluate the Jacobian of the warping %—W.
4

Compute the inverse Hessian H~*.

Multiply steepest descend with error.

Comptue Ap.

® N> o

Update parameters p < p + Ap.

9. Repeat until Ap < e.

The algorithm follows a predict-correct cycle. A prediction I(W(z,p)) of the warped
image is computed from an initial estimate. The correction parameter Ap is computed.
The larger the error, the larger the correction. Challenges are

e How to get initial p?

e If the initial estimate is too far, the linear approximation does not longer hold.
Solution are pyramidal implementations

e [llumination changes, object deformations,
e Occlusions,

e A solution can be to update the template with newest image.

Coarse to Fine estimation - Pyramidal implementations: Because the small mo-
tion assumption, regular optical flow methods work bad if the object we are tracking
moves a long distance. Building image pyramids for each image and doing optical flow on
each layer of the pyramid (to get rid of small motion constraints). Decrease resolution to
get smaller image.
Generalization of Lucas-Kanade The same concept (predict/correct) can be applied
to tracking of 3D objects. In order to deal with wrong prediction, it can be implemented
in a Particle-Filter fashion.
Tracking by detection of local image features

1. Keypoint detection and matching. Invariant to scale, rotation or perspective.

2. Geometric verification (RANSAC)

Issues are:

e How to segment the object to track from background?
e How to initialize the warping?
e How to handle occlusions?

e How to handle illumination changes andn on modeled effects?
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Lecture 12 - Recognition

Recognition applications are: large scale image retrieval, recognition for smartphones, face
recognition (four basic types of feature detectors, white areas are subtracted from black
ones, deep learning), technology to convert scanned docs to text, pedestrian recognition.
Challenges are: intra class variations (how to detect ANY car), context and human ex-
perience.

There are essentially two schools of approaches:

e Model based: tries to fit a model (2D or 3D) using a set of corresponding features
(SIFT 4+ RANSAC). Example: Is this book present in the scene? Look for cor-
responding matches: if most of the book’s keypoints are present in the scene, the
book is present in the scene.

e Appearance based: the model is defined by a set of images representing the object
(template matching for example). Example: The model of the object is simply
an image (template). Shift the template over the image and compare (NCC, SSD).
This works only if the object and the template are identical.

The main goal of object recognition is to classify. Say yes or no to presence of an oject
or categorize it. Either with bounding box or full segmentation.

Detection via Classification: main idea
We need
e Obtain training data.
e Define features.
e Define classifier.
Consider all subwindows in an image and sample a multiple scales and positions. Make a

decision per window.

Generalization: Machine Learning approach

Apply a prediction function to a feature representation of the image to get the desired
output.

y = f ( T ). (152)
~~ ~~~ . .
output prediction function Bput: image features

Training: Given a training set of labeled (with correct answers!) examples, estimate the
prediction function by minimizing the prediction error on the set.
Testing: Apply f to a never-before-seen test example x and output the predicted value

y = f(z).

Features could be blob features, image histograms or histograms of oriented gradients.
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Classifiers: Nearest neighbor

Features are represented in the descriptor space. Brute force matching, compute distances.
Important facts are

e No training required.
e All we need is a distance function for our inputs
e Problem: need to compute distances to all training examples.

Features could be blob features, image histograms or histograms of oriented gradients.

Classifiers: Linear

Find a linear function to separate the classes
f(z) = sgn(wzx + b). (153)

Classifiers: Nonlinear

Find a nonlinear function to separate the classes.
How can one define a classifier? We need to cluster the training data, then we need a
distance function to determine to which cluster the query image belongs to.

K-Means Clustering

This is an algorithm to partition n observations into k clusters in which each observation
x belongs to the cluster S; with centroid m;. It minimizes the sum of squared Euclidean
distances between points x and their nearest cluster centers m;

DX, M) =) > (x—m) (154)

i=1 z€S;
The algorithm reads
1. Randomly initialize k cluster centers
2. Iterate untl convergence:

e Assign each data point x; to the nearest center m;.

e Recompute each cluster center as the mean of all points assigned to it.

Bag of Words

This is used e.g. for large-scale image retrieval.

Visual Place Recognition We want to find the most similar images of a query image
in a database of N images. The complexity is & 22M > feature comparisons (assuming each
image has M features. Each image must be compared with all other images. Only with
M = N = 100, you get 50 million images. The solution is to use an inverted file index,

which reduces the complexity to N x M.
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Inverted File Text

For text documents, an index is important. We want to find every image in which a
feature occurs. How many SIFT or BRISK features exist 7

e SIFT: infinite.
e BRISK-128: 2128 — 92 4. 1038,

For this reason, we need to create visual words, then put them into a vocabulary. Basically,
we collect images and we extract features. A visual word is the centroid of a cluster. We
then cluster the descriptors with the different words.

An inverted file index lists all visual words in the vocabulary (extracted at training time).
Each word points to a list of images from the all image Data Base, in which which that
word appears. The DB grows as the robot navigates and collects new images. Voting
Array: has as many cells as the images in the DB. Each word in the query image votes
for an image.

Robust object/scene recognition

Visual Vocabulary discards the spatial relationships between features: two images with
the same features shuffled around will return a 100% match when using only appearance
information. This can be overcome with geometric verification: test the h most similar
images to the query image for geometric consistency (5,8 point RANSAC) and retain the
image with the smallest reprojection error and largest number of inliers. More words is
better!
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Lecture 13 - Visual Inertial Fusion

Pose Graph Optimization

So far we assumed that the transformations are between consecutive frames, but trans-
formation can be computed also between non adjacent frames Tj; (e.g. when features
from previous keyframes are still observed). They can be used as additional constraints
to improve cameras poses by minimizing the following:

Cy, = argmin, Y > [|C; — C; - Ty (155)
i

e For efficiency, only the last m keyframes are used.

e Gauss-Newton or Levenber-Marquadt are typically used to minimize it. For large
graphs, there are open source things.

Figure 19: Pose graph optimization.

Bundle Adjustment (BA)
This incorporates the knowledge of landmarks (3D points).

X', Cp = argminy. ¢, Z Z p (pp, — 7(X", Cr)) . (156)
ik

Outliers are a problem, how can we penalize them? In order to penalize wrong matches,
we can juse the Huber or Turkey cost.

B x2, if |lzf <k
Huber p(r) = {k - (2|z] — k) if |x| > k linear
2 . (157)
o uf x| >«
Tukey  p(r) = { (- @R if lel <o

Bundle Adjustment vs Pose-graph Optimization

e BA is more precise than pose-graph optimization because it adds additional con-
straints (landmark constraints).

e But more costly: O((¢M +IN)?) with M and N being the number of points and
camera poses and ¢ and [ the number of parameters for points and camera poses.
The Jacobian is cubic in ¢ and [. Workarounds are
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— A small window size limits the number of parameters for the optimization and
thus makes real-time bundle adjustment possible.

— It is possible to reduce the computational complexity by just optimizing the
camera parameters and keeping the 3D landmarks fixed, e.g. freeze the 3D
points and adjust the poses

MUKEY HUBER /

o 0 k

Figure 21: Bundle Adjustment.

IMUs

Inertial Mesaurement Unit. Measures angular velocity and linear accelerations.
e Mechanical: spring/damper system.
e Optical: Phase shift projected laser beams is proportional to angular velocity.

e MEMS (accelerometer): a spring-like structure connects the device to a seismic mass
vibrating in a capacitive divider. A capacitive divider converts the displacement of
the seismic mass into an electric signal. Damping is created by the gas sealed in the
device.

e MEMS (gyroscopes): measure the Coriolis forces acting on MEMS vibrating struc-
tures. Their working principle is similar to the haltere of a fly. Have a look!
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Why IMU?
e Monocular vision is scale ambiguous.
e Pure vision is not robust enough (Tesla accident):
— Low texture.
— High dynamic range.
— High speed motion.

Why not just IMU? Why Vision?

Pure IMU integration will lead to large drift (especially cheap IMUs). Integration of
angular velocity to get orientation: error proportional to ¢. Double integration to get
position: if there is a bias in acceleration, the error of position is proportional to t°.
The actually position error also depends on the error of orientation.

Why visual inertial fusion?
e Cameras

+ Precise in slow motion.

-+ Rich information for other purposes

- Limited output rate (~ 100H z)
- Scale ambiguity in monocular setup.

- Lack of robustness

e IMU

+ Robust.
+ High output rate (~ 1000H z).

+ Accurate at high acceleration.

- Large relative uncertainty when at low acceleration/angular velocity.

- Ambiguity in gravity / acceleration.

Together, they can work for state estimation: loop detection and loop closure.

IMU: Measurement Model
@iy p(t) = wipp(t) +b9(t) +n(t)
ayp(t) = Rew(t) - (ayp(t) —g"") 4+ b*(t) +n(t)

where g stands for Gyroscope and a for accelerometer. The noise is additive Gaussian
white noise. The bias has own dynamics

(158)

b(t) = oy - w(t), (159)

70



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2017

i.e. the derivative of the bias is white Gaussian noise (random walk). In discrete time,
one writes

blk] = bk — 1] + opq - w[k], w[k] ~ N(0,1), opq = 0p- V1t (160)
IMU biases

e Can be estimated,
e Can change due to temperature change, mechanical pressure,..

e Can change everytime the IMU is started.

Integration leads to

Pwity, = Pth + (tg — tl)Uth + / /t2 RWt(t) (d(t) — ba<t> + gw) dt27 (161)

which depends on initial position and velocity. The rotation R(t) can be computed with
a giroscope.

Different Paradigms
Loosely Coupled Approach

Treats VO and IMU as two separate (not coupled black boxes). Each block estimates
pose and velocity from visual and inertial data (pose and velocity up to a scale and
inertial data in absolute scale).

2D features Position (up to a scale) &
. orientation
Images Feature VO
Extraction & matching l
Refined
Fusion |, Position
MU Orientation
measurements IMU Integration f Velocity
Position
Onentation
Velocity

Figure 22: Loosely Coupled Approach.

Tightly Coupled Approach

Makes use of the raw sensors’ measurements: 2D features, IMU readings, more accurate,
more implementation effort.

Filtering: Visual Inertial Formulation

System states are:

e Tightly Coupled: X = (pw (¢); qwp(t); vw (t); b*(t); b9(t); Lup1; - - - Lk ), with L
Landmarks.

e Loosely Coupled X = (pW(t);qWB(t);UW(t);ba(t)§bg(t))
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2D features
images Feature
E— . -
Extraction & matching l
Refined
Fusion |, Position
MU Orientation
measurements IMU Integration 1 Veloolty
Position
Onentation
Velocity
Figure 23: Tightly Coupled Approach.
Closed-form Solution (1D case)
The absolute pose x is known up to a scale s, thus
T = SI. (162)

From the IMU we get

v = 20+ 00 - (b1 — to) + //tt a(t)dt (163)

By equating them we get

5B = 2o+ 10 - (t1 — to) + / /t:l a(t)dt (164)

As shown, for 6DOF both s and vy can be determined from a single feature observation
and 3 views. x can be set to 0. It holds

t1
Si‘l =17 * (tl — to) + // a(t)dt
to

$To =g - (ta — to) + //: a(t)dt (165)
S (0 Gm)- ()= ()
Closed-form Solution (general case)

Consider N feature observations and 6DOF case. Can be used to initialize filter and
smoothers. One can show hat a linear system of equations can be achieved and solved
using the pseudoinverse:

AX = 8, (166)

where X is the vector of unknowns (3D point distances, absolute scle, initial velocity,
gravity vector, biases). A and S contain 2D feature coordinates, acceleration, and angular
velocity measurements.
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m Fixed-lag Smoothing Full smoothing

Only updates the most ~ Optimizes window of states Optimize all states
recent states * Marginalization * Nonlinear Least squares
* (e.g., extended * Nonlinear least squares optimization
Kalman filter) optimization

x1 Linearization v'Re-Linearize v'Re-Linearize
XAccumulation of xAccumulation of linearization v'Sparse Matrices
linearization errors errors

v'Highest Accuracy
XGaussian X@Gaussian approximation of
approximation of marginalized states

marginalized states

vFastest v'Fast xSlow (but fast with GTSAM)

Figure 24: Different Paradigms.

Different Paradigms

E.g. ROVIO, minimizes the photometric error instead of the reprojection error.

Filtering: Problems

e Wrong linearization point: linearization depends on the current estimates of states,
which can be wrong.

e Complexity of the EKF grows quadratically in the number of landmarks. Few
Landmarks are usually tracked to allow real time operation.

e Alternative: MSCKEF: keeps a window of recent states and updates them using EKF.
Incorporate visual observation without including point positions into the states.
Maximum A Posteriori (MAP) Estimation

Fusion solved as a non-linear optimization problem. Increased accuracy over filtering
methods. We have

Tp = f(Tp-1), 2 = bz, 1), (167)
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where X are the robot states, L the 3D points and Z the features and IMU measurements.
It holds

{X*, L"} = argmaxy ; P(X, L|Z)

N M
= argming  {Y [[f(ze-1) —anll}, + ) llh(z) —=ll8}  (168)
k=1 i=1

J/ N J/

TV TV
IMU residuals Reprojection residuals

An open problem is consistency:
e Filters: Linearization around different values of the same variable may lead to error.

e Smoothing methods: may get stuck in local minima.

Camera-IMU calibration

Goal: Estimate the rigid body transformation Tsc and delay t; between a camera and an
IMU rigidly attached. Assume that the camera has already been intrinsically calibrated.
Data: Image points of detected calibration pattern and IMU measurements (accelerom-
eter and gyroscope).

Approach: Minimize a cost function

J<9) = erat + Jacc + ngro + JbiasaCC + Jbiasgym (169)
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Event Based Vision

Feature based vs. Photometric (direct) methods

Feature based methods
1. Extract and match features (+RANSACQ)
2. Minimize reprojection error.
They are
e +: Large frame-to-frame motions.
e -: slow due to costly feature extraction and matching.
e -: matching outliers.
Direct (photometric) errors are
1. The pixel is the feature to track.
2. Minimize photometric error.
They are
e +: All information in the image can be exploited (precision, robustness).
e +: Increasing camera frame rate reduces computational cost.
e - Limited frame-to-frame motion.

Pure vision is not robust enough to low texture, HDR, high speed motion.
Accuracy, Efficiency, Robustness

Robustness
(HDR, motion blur, low texture) . +IMU (from 2007)

Efficiency (10x accuracy)
(speed and CPU load)

Feature + Direct (from 2000)

_____________________________

.'/ Accuracy
Feature based (1980-2000)

Figure 25: SLAM research.
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Event-based Cameras

Motivation: current flight maneuvers achieved with onboard cameras are still too slow
compared with those attainable by birds. We need low latency sensors and algorithms.
The average robot-vision algorithms have latencies of 50-200 ms, which puts a hard bound
on the agility of the platform. Event cameras enable low-latency sensory motor con-
trol < 1ms.

Human Vision System

130 million photoreceptors (similar to pixels) but only 2 millions axons (wires that con-
nect).

DVS
Advantages:

e Low latency (1 micro second)
e High dynamic range (140 dB instead of 60 dB)
e Low power: 10mW instead of 1W
Disadvantages:
e Paradigm shift: requires totally new vision algorithms

— Asynchronus pixels,

— No intensity information (only binary intensity changes).

A traditional camera outputs frames at fixed time intervals. By contrast, a DVS outputs
asynchronous events at microsecond resolution. An event is generated each time a single
pixel detects an intensity changes value:

df
event:(t, < x,y >,sign (%)} (170)

All pixels are independent from another. Implements level-crossing sampling. Reacts
to logarithmic brightness changes.
DVS Operating Principle

Each pixel is independent of all the other pixels. Events are generated everytime a single
pixel sees a change of the logarithm of the brightness that is equal to C, i.e.

[ log(I)| = |log(I(t + At) — log(I(1))| = C. (171)

where C' € [0.15,0.20] is called contrast sensitivity and can be tuned by the user. Since
brightness can be either positive or negative, we have ON event if = C' and OFF event
if = —C. Traditional sampling is performed with the discriminant (time) on x—axis.
Level-crossing sampling works with the change in intensity, in the y—axis.
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ON
| -A-d(log/) __[ |
R
[ reset l= [T
ot

photc-)receptor differencing comparators

Figure 26: DVS circuit

V= logiI(t)

oON aoN aoN aN

t t t t :
0 ! 1R

OFF OFF OFF OFF OFF OFF

Figure 27: DVS.

Applications

Low power monitoring, fast closed-loop contro, high dynamic range imaging, low power
gesture recognition, high speed flow speed estimation.

DVS vs High speed cameras

Calibration of a DVS

The standard pinhole camera model is still valid (same optics). Standard passive calibra-
tion cannot be used: we would need to move the camera. Blinking patterns (computer
screen, LEDs).

A simple optical flow algorithm: a moving edge

White pixels become black, i.e. the brightness decrease, i.e. negative events (black color).

. . _ A
Events are represented by dots. At what speed is the edge moving? v = 3.

How many events should be used?
Two different approaches

e Event-by-event processing (i.e. estimate the state event by event): Pros: low
latency, Cons: with high speed motion, there are dozens of millions of events per

seconds (GPU)
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: ‘. -
1

Photron Fastcam SA5 Matrix Vision Bluefox DvVs
Max fps or measurement 1MHz 90 Hz 1MHz
rate
Resolution at max fps B4x16 pixels 752x480 pixels 346x260 pixels
Bits per pixels 12 bits 8-10 1 bits
Weight 6.2 Kg 30g 30g
Active cooling yes No cooling No cooling
Data rate 1.5 GB/s 32MB/s ~1MB/s on average
Power consumption 150 W + llighting 1.4W 20 mwW
Dynamic range n.a. 60 dB 140 dB

Figure 28: DVS vs High Speed Cameras.

e Event-packet processing (i.e. process the last N events): Pros: N can be tuned
to allow real-time performance on a CPU. Cons: no longer microsecond resolution
(when is this really necessary=)

Event-by-event based Processing

Let’s start with an approximation:

Alog(l) = alo—g([)At

= At (172)

Claim 2. To simplify the notation, let’s assume that I(z,y,t) = log(I(z,y,t)). Consider
a given pixel p(x,y) moving with apparent motion @ = (u,v) (i.e. induced by a moving
3D patch). It can be shown, that an event is generated if the scalar product between the
gradient and the appearent motion vector u is equal to C.

—VI-u=C (173)

Proof. The proof comes from the brightness constancy assumption, which says that the
intensity value of p, before and after the motion, must remained unchanged

(z,y,t) = I(z +u,y+v,t+Al) (174)
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By replacing the right-hand term by its first order approximation at t + At, we get

oI oI
1 =7 A - -
(@,y.8) = L@,y t + Al) + Z-u + ay"
ol ol (175)
I(z,y,t + At) — I(z,y,t) = ol ayv

=Al=C=-V-u.

This equation described the linearized event generation equation for an event generated
by a gradient VI that moved by a motion vector u (optical flow) during a time interval
At. 1 Equation, 2 Unknowns, solution is to add events. O

Case Study 1: Image Intensity Reconstruction

The intensity signal at the event time can be reconstructed by integration of +=C. Given
the events and the camera motion (rotation), recover the absolute brightness. Explana-
tion: An event camera naturally responds to edges, hence, if we know the motion, we can
relate the events to world coordinates to get an edge/gradient map. Then, just integrate
the gradient map to get absolute intensity.

1. Recover the gradient map of the scene. Let L = log(/). Then
AL(t) = L(t) — L(t — At) = C. (176)
In terms of the brightness map M (z,y):
M (pm(t)) — M(pp(t — At)) = g-v - At, (177)
with g = VM (p,(1)).
2. Integrate the gradient to obtain brightness. Poisson reconstruction: integrate the
gradient map g to get absolute brightness M.
Case Study 2: Event-based Corner Detection

FAST-like event-based corner detection: operates on surface of active events. The event
is considered a corner if

e 3-6 contiguous pixels on red ring are newer than all other pixels on the same ring
and,

e 4-6 contiguous pixels on blue ring are newer than all other pixels on the same ring

1.1 Event-packet based processing

EVO: parallel tracking and mapping in real-time. Tracking, 6DOF pose, Mapping, 3D
Map. How does a 3D mapping works? An event camera reacts to strong gradients in
the scene. Areas of high ray-density likely indicate the presence of 3D structures. The
ray-density can be seen as tue Disparity Space Image (DSI). This is a projective sampling
grid (with adaptive thresholding).
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Original Gradient in x directionGradient in y direction

Image (9 = BI) l' (9 =8I)

Poisson Image
Reconstruction

e

Solve Poisson eq:
(Al = divg)

Fast using the FFT .
Reconstructed Divergence

Image (divg = Bygx + By9y)

Figure 29: DVS vs High Speed Cameras.

DAVIS: Dynamic and Active-pixel Vision Sensor

Combines an event sensor (DVS) with a standard camera in the same pixel array. Output
are frames (at 30 Hz) and events (asynchronous). One can them perform SLAM with an
IMU, which increases robustness and accuracy.

Open problems for DVS are: noise modeling, asynchronous feature and object detec-
tion and tracking, sensor fusion, asynchronous learning and recognition, estimation and
control, low power computation.
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