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Lecture 08: Multi-View Geometry II

1 Two-view Structure from Motion

The camera relative pose is unknown: this is e.g. the case when the two images are taken
from the same camera but at different times and positions.

Problem Formulation

Given n point correspondences between two images, {pi1 = (ui1, v
i
1), pi2 = (ui2, v

i
2)}, simul-

taneously estimate the 3D points P i, the camera relative-motion parameters (R, T ), and
the camera intrinsics K1, K2 that satisfy the equations:
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1
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w

1

 ,

λ2 ·
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w
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w

1


(1.1)

One has two cases then: the case of calibrated cameras and the case uncalibrated cameras.

1.1 Calibrated Cameras (K1, K2 known)

For convenience, we use normalized image coordinates :ūv̄
1

 = K−1 ·

uv
1

 . (1.2)

We want to find R, T, P i which satisfy

λ1 ·

ūi1v̄i1
1

 = K1 · [I|0] ·
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Y i
w
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w

1

 ,

λ2 ·

ūi2v̄i2
1

 = K2 · [R|T ] ·


X i
w

Y i
w

Zi
w

1

 .

(1.3)

Scale Ambiguity: If we rescale the entire scene by a constant factor (i.e. similarity
transformation), the projections (in pixels) of the scene points in both images remain the
same (because the angles remain the same). This has the following effects:

• In monocular vision it is not possible to recover the absolute scale of the scene.
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• In stereo vision, only 5 degrees of freedom are measurable:

– 3 parameters to describe the rotation.

– 2 parameters for the translation up to a scale (we can only compute the
direction of translation but not its length (magnitude)).

How many knowns and unknowns are we dealing with?

• 4n knowns: n correspondences, each one (ui1, v
i
1) and (ui2, v

i
2), i = 1, . . . , n.

• 5 + 3n unknowns: 5 for the motion up to a scale (3 rotation and 2 translation) and
3n which is the number of coordinates of the n 3D points.

In order for the problem to have a solution it should hold

4n ≥ 5 + 3n

⇒ n ≥ 5.
(1.4)

The first analytical solution for 5 points was given by Kruppa in 1913 (10 degree order
polynomial, up to 10 solutions with complex ones). In the following, we are exploring the
possibility of solving the estimation of the relative motion (R, T ) independently of the
estimation of the structure (3D points).
Let’s define the cross product as a matrix multiplication

a× b =

 0 −az ay
az 0 −ax
−ay ax 0

 ·
bxby
bz

 = [a]x · b (1.5)

1.1.1 Epipolar Geometry

Considering Figure 1, one notices the two vectors

p̄1 =

ū1

v̄1

1

 , p̄2 =

ū2

v̄2

1

 . (1.6)

We can observe that p1, p2, T are coplanar, i.e.:

pT2 · n = 0

pT2 · (T × p′1) = 0

pT2 · (T × (Rp1)) = 0

pT2 · [T ]× ·Rp1 = 0

pT2 · E · p1 = 0 is the epipolar constraint, where E = [T ]× ·R is the essential matrix.

(1.7)

This is also called the Longuet-Higgins equation. Applying the constraints results in four
different solutions for R and T .
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Figure 1: Epipolar constraint

Example 1. You are given the rotation matrix

R = I3×3, (1.8)

and the translation vector

T =

−b0
0

 . (1.9)

The essential matrix for this formulation reads

E = [T ]× ·R

=

0 0 0
0 0 b
0 −b 0

 · I3×3

=

0 0 0
0 0 b
0 −b 0

 .

(1.10)

1.1.2 How to compute the Essential Matrix

Kruppa’s solution (with at least 5 correspondences) is not efficient. In 1996, Philipp pro-
posed an iterative solution. In 2004, the first efficient non iterative solution was proposed.
This uses Groebner Decomposition. The first popular solution uses 8 points and is
called the 8 point algorithm or Longuet-Higgins algorithm (still used in NASA
rovers).

The 8-point Algorithm

The Essential matrix is defined by

p̄T2 · E · p̄1 = 0. (1.11)
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Each pair of point correspondences provides a linear equation. For n points we can write


ū1

2 · ū1
1 ū1

2 · v̄1
1 ū1

2 v̄1
2 · ū1

1 v̄1
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1 v̄1
2 ū1

1 v̄1
1 1
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1 1
...

...
...

...
...

...
...

...
...

ūn2 · ūn1 ūn2 · v̄n1 ūn2 v̄n2 · ūn1 v̄n2 · v̄n1 v̄n2 ūn1 v̄n1 1


︸ ︷︷ ︸

Q (known)

·



e11

e12

e13

e21

e22

e23

e31

e32

e33


︸ ︷︷ ︸
Ē unknown

= 0 (1.12)

This problem can be written as
Q · Ē = 0. (1.13)

One has two types of solution:

• Minimal Solution

– Qn×9 should have rank 8 to have unique (up to scale) non trivial solution Ē.

– Each point correspondence provides 1 independent equation.

– Thus, 8 point correspondences are needed.

• Over-determined Solution

– n > 8 points.

– A solution is to minimize ||Q · Ē||2 subject to the constraint ||Ē||2 = 1. The
solution is the eigenvector corresponding to the smallest eigenvalue of matrix
QT ·Q.

– This can be solved with Singular Value Decomposition.

• Degenerate Solution if 3D points are coplanar. There is the 5 point algorithm
which holds also for coplanar points.

Interpretation

With the algorithm we try to minimize the algebraic error

N∑
i=1

(p̄i
T

2 · E · p̄i1)2, (1.14)

where
p̄T2 · E · p̄1 = ||p̄2|| · ||E · p̄1|| · cos(θ) (1.15)

which is not zero if p1, p2, T are not coplanar. When extracting solutions, four results are
available. We look only at results with points in front of both cameras (Cheirality
Constraint).
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1.2 Uncalibrated Cameras (K1, K2 unknown)

It holds
p̄T2 · E · p̄1 = 0, (1.16)

where ūi1v̄i1
1

 = K−1
1 ·

ui1vi1
1

 ,

ūi2v̄i2
1

 = K−1
2 ·

ui2vi2
1

 . (1.17)

By rewriting the constraint, one obtainsui2vi2
1

T

·K−T2 · E ·K−1
1 ·

ui1vi1
1

 = 0

ui2vi2
1

T

· F ·

ui1vi1
1

 = 0,

(1.18)

where F is the fundamental matrix, which can be computed as

F = K−T2 · E ·K−1
1 = K−T2 · [T ]x ·R ·K−1

1 . (1.19)

The same 8-point algorithm can be used to compute the fundamental matrix:
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︸ ︷︷ ︸
F̄ unknown

= 0 (1.20)

There are orders of magnitude of difference, which leads to poor results with least-
squares. How to solve this issue?

1.2.1 Normalized 8-point algorithm

This estimates the Fundamental matrix on a set of normalized correspondences (with
better numerical properties) and then unnormalizes the result to obtain the fundamental
matrix for the original given correspondences.
Idea: Transform image coordinates so that they are in the range [−1, 1] × [−1, 1]. One
way is to apply the rescaling and shift proposed in Figure 2 A more popular one is to
rescale the two point sets such that the centroid of each is 0 and the mean standard
deviation

√
2. This can be done for every point as follows

p̂i =

√
2

σ
· (pi − µ), (1.21)
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Figure 2: Shift for normalized algorithm.

where

µ =
1

N

n∑
i=1

pi (1.22)

is the centroid of the set and σ = 1
N

∑n
i=1 ||pi−µ||2 is the mean standard deviation. This

transformation can be expressed in matrix form

p̂i =


√

2
σ

0 −
√

2
σ
µx

0
√

2
σ
−
√

2
σ
µy

0 0 1

 · pi. (1.23)

The algorithm at the end reads

1. Normalize point correspondences: p̂1 = B1 · p1, p̂2 = B2 · p2.

2. Estimate F̂ using normalized coordinates p̂1, p̂2.

3. Compute F from F̂ :

p̂T2 · F̂ · p̂1 = 0

pT2 ·BT
2 · F̂ ·B1 · p1 = 0

⇒ F = BT
2 · F̂ ·B1

(1.24)

1.2.2 Error Measures

The quality of the estimated fundamental matrix can be measured by looking at cost
functions. The first is defined using the Epipolar Constraint

err =
N∑
i=1

(p̄i
T

2 · E · pi1)2. (1.25)

This error will exactly be 0 if computed from 8 points. For more points this will not be
0 because of image noise/outliers. Better methods are

Directional Error

Sum of the angular distances to the Epipolar plane: err =
∑

i(cos(θi))
2, where

cos(θ) =

(
pT2 · E · p1

||pT2 || · ||E · p1||

)
. (1.26)
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Squared Epipolar-Line-to-point Distances

err =
N∑
i=1

d2(pi1, l
i
1) + d2(pi2, l

i
2). (1.27)

Cheaper than reprojection error: does not require point triangulation!

Figure 3: Epipolar Line Distance.

Reprojection Error

Sum of the Squared Reprojection Errors

err =
N∑
i=1

||pi1 − π1(P i)||2 + ||pi2 − π2(P i, R, T )||2 (1.28)

Computation is expensive because of point triangulation, but is the most accurate!

Figure 4: Reprojection Error.
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2 Robust Structure From Motion

Matched points are usually contaminated by outliers. Causes for this are

• Change in view point and illumination.

• Image noise.

• Occlusions.

• Blur.

The task of removing them is called Robust Estimation. Since error is integrating over
time, this represents a major issue.

2.1 RANSAC (Random Sample Consensus)

Ransac is the standard method for model fitting in the presence of outliers (noise
points or wrong data). It can be applied to all problems where the goal is to estimate
parameters of a model from the data. An easy example is RANSAC for line fitting:

1. Select sample of 2 points at random.

2. Calculate model parameters that fit the data in the sample.

3. Calculate error function for each data point.

4. Select data that supports current hypothesis.

5. Repeat.

6. Select the set with the maximum number of inliers obtained within k iterations.

How many iterations are needed? All pairwise combinations : N ·(N−1)
2

. This is computa-
tionally unfeasible if N is too large. With a probabilistic approach, one can reduce this
number drastically:
Let w be the number of inliers/N , N be the total number of data points. We can think
of w as

w = P (selecting an inlier-point out of the dataset). (2.1)

We assume that the 2 points necessary to estimate a line are selected independently, i.e.

w2 = P (both selected points are inliers)

1− w2 = P (at least one of these two points is outlier)
(2.2)

Let k indicate the number of RANSAC iterations so far, then

(1− w2)k = P (RANSAC never selected two points both inliers) (2.3)

Let p be the probability of success:

1− p = (1− w2)k

⇒ k =
log(1− p)

log(1− w2)
.

(2.4)
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Remark. Think of having p = 0.99 and w = 0.5, then k = 16, which is dramatically fewer
than all combinations. The number of points does not influence that!.

RANSAC applied to general model fitting is:

1. Initial: let A be a set of N points.

2. Repeat.

3. Randomly select a sample of s points from A.

4. Fit a model from the s points.

5. Compute the distances of all other points from this model.

6. Construct the inlier set (i.e. count the number of points whose distance is < d).

7. Store these inliers.

8. Until maximum number of iterations k is reached.

9. The set with the maximum number of inliers is chosen as solution to the problem.

k =
log(1− p)

log(1− ws)
. (2.5)

In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients

a) What’s the model in SFM? → the Essential Matrix (for calibrated cameras) or the
Fundamental Matrix (for uncalibrated cameras). Alternatively, R and T .

b) What’s the minimum number of points to estimate the model? → We know that
5 points is the theoretical minimum number of points. However, 8-point algorithm is
the state of the art, then 8 is the minimum.

c) How do we compute the distance of a point from the model. → We can use the
epipolar constraint to measure how well a point correspondence verifies the model E
or F, respectively. However, the Directional error, the Epipolar line distance, or
the Reprojection error (even better) are used.

1. Randomly select 8 point correspondences.

2. Fit the model to all other points and count the inliers.

3. Repeat from 1 for k times.

With s points one gets:

k =
log(1− p)

log(1− (1− ε)s)
(2.6)

Remark. No 6 DOF estimation for the 2-point RANSAC. k increases exponentially with
the fraction of outliers ε.

• As observed, k is exponential in the number of points s necessary to estimate the
model. We can see that k increases exponentially with the fraction of outliers ε.
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• The 8-point algorithm is extremely simple and was very successful; however it re-
quires more than 1177 iterations.

• The 5-point algorithm only requires 145 iterations, but can return up to 10 solutions
of E.

Can we use less than 5 points? Yes, with planar motion.

2.2 Planar Motion

Planar motion is described by three parameters ϑ, ϕ, ρ, defined in Figure 5. It holds

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , T =

ρ cos(ϕ)
ρ sin(ϕ)

0

 (2.7)

Let’s compute the Epipolar Geometry

Figure 5: Planar motion.

E = [T ]x ·R

=

 0 0 ρ sin(ϕ)
0 0 −ρ cos(ϕ)

−ρ sin(ϕ) ρ cos(ϕ) 0

 ·
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1


=

 0 0 ρ sin(ϕ)
0 0 −ρ cos(ϕ)

−ρ sin(ϕ− θ) ρ cos(ϕ− θ) 0

 .

(2.8)

E has 2 DoF (θ, ϕ), because ρ is the scale factor. Thus, 2 correspondences are sufficient
to estimate them.
But: can we use less than 2 point correspondences? Yes, if we exploid wheeled vehicles
with non-holonomic constraints. Wheeled vehicles like cars, follow a locally-planar cir-
cular motion about the instantaneous Center of Rotation (ICR). Since ϕ = θ/2, we have
only 1 DoF. Only 1 point correspondence is needed. This is the smallest parametriza-
tion possible and results in the most efficient algorithm for removing outliers
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(Scaramuzza). This updates the problem to be

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , T =

ρ cos( θ
2
)

ρ sin( θ
2
)

0

 (2.9)

and

E = [T ]x ·R

=

 0 0 ρ sin( θ
2
)

0 0 −ρ cos( θ
2
)

ρ sin( θ
2
) −ρ cos( θ

2
) 0

 .
(2.10)

With the Epipolar Geometry constraint this leads to

θ = −2 tan−1

(
v2 − v1

u2 + u1

)
. (2.11)

Only one iteration: compute θ for every point correspondence. Up to 1000 Hz, 1-point
RANSAC is then only used to find the inliers. Motion is then estimated from them in
6DOF.

Figure 6: Non-holonomic.
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2.3 Understanding Check

Are you able to answer the following questions?

• What’s the minimum number of correspondences required for calibrated SFM and
why?

• Are you able to derive the epipolar constraint?

• Are you able to define the essential matrix?

• Are you able to derive the 8-point algorithm?

• How many rotation-translation combinations can be the essential matrix decomposed
in?

• Are you able to provide a geometrical interpretation of the epipolar constraint?

• Are you able to describe the relation between the essential and the fundamental
matrix?

• Why is it important to normalize the point coordinates in the 8-point algorithm?
Describe one or more possible ways to achieve this normalization.

• Are you able to describe the normalized 8-point algorithm?

• Are you able to provide quality metrics for the fundamental matrix estimation?

• Why do we need RANSAC?

• What is the theoretical maximum number of combinations to explore?

• After how many iterations can RANSAC be stopped to guarantee a given success
probability?

• What is the trend of RANSAC iterations k vs. the fraction of outliers ε = 1−w vs.
the number of points to estimate the model?

• How do we apply RANSAC to the 8-point algorithm vs DLT?

• How can we reduce the number of RANSAC iterations for the SFM problem?

• In practice, can you fully rely on the formula that predicts the optimal number of
iterations?

12


	Two-view Structure from Motion
	Calibrated Cameras (K1,K2 known)
	Epipolar Geometry
	How to compute the Essential Matrix

	Uncalibrated Cameras (K1,K2 unknown)
	Normalized 8-point algorithm
	Error Measures


	Robust Structure From Motion
	RANSAC (Random Sample Consensus)
	Planar Motion
	Understanding Check


