
Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

Lecture 06: Feature Detection II

1 Feature Detection

1.1 Scale Changes

How can we match image patches corresponding to the same feature but belonging to
images taken at different scales? A possible solution is to rescale the patch, i.e. bring
it to the canonical scale. The problem by scale search is that it is time consuming: we
need to do it individually for all patches in one image. In fact, the complexity would be
(NM)2 (assuming N features per image and M scale levels for each image). A possible
solution to this problem is to assign each feature its own scale (the size).

1.1.1 Automatic Scale Selection

The process of automatic scale selection can be described through:

• Design a function on the image patch, which is scale invariant, i.e., which has the
same value for corresponding regions, even if they are at different scales.

• For a point in one image, we can consider it as a function of region size (patch
width).

Approach

We take a local maximum of the function: the region size for which the maximum is
achieved, should be invariant to image scale. This scale invariant region size is
found in each image independently. When the right scale is found, the patch must
be normalized. A good function consists in single and sharp peaks. If there are multiple
peaks, we need to assign more region sizes to have a unique feature. In this case, sharp,
local intensity changes are good regions to monitor in order to identify the scale. Blobs
and corners are the ideal locations.

Function

The idea beind the function for determining the scale is to convolve the image with the
kernel to identify sharp discontinuities:

f = Kernel ∗ Image. (1.1)

It has been shown that the Laplacian of Gaussian kernel is optimal under certain assump-
tions

LoG = ∇2G(x, y) =
∂2G(x, y)

∂x2
+
∂2G(x, y)

∂y2
. (1.2)

Then, the correct scale is found as local maxima across consecutive smoothed images.
This should be done for severals region sizes.
Note that an efficient implementation of multisale detection uses the so called scale-space
pyramid: instead of varying the window size of the feature detector, the idea is to generate
upsampled (enlarge the image, interpolating) or downsampled versions of the same image.

1



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

2 Feature Descriptors

We already know how to detect points, but how can we describe them for matching? We
present here two methods:

• Simplest Descriptor: Intensity values within a squared patch or gradient his-
togram.

• Census transform or Histograms of Oriented Gradients.

Once the descriptors are generated, descriptor matching can be done using Hamming
Distance (Census) or (Z)SSD,(Z)SAD, (Z)NCC. We would like to find the same
features regardless of the transformation that is applied to them. In fact, most feature
methods are designed to be invariant to

• 2D translation,

• 2D rotation,

• scale.

Some of them can also handle

• Small view point invariance (e.g. SIFT works up to about 60 degrees).

• Linear illumination changes.

2.1 How to achieve Invariance?

2.1.1 Re-scaling and De-rotation

The approach reads:

• Find the correct scale using the LoG operator.

• Rescale the patch to a default size (e.g. 8× 8 pixels).

• Find the local orientation, i.e. the dominant direction of gradients for the image
patch (Harris eigenvectors).

• De-rotate the patch.

In order to de-rotate the patch, one uses patch-warping.

Patch Warping

1. Start with an empty canonical patch (all pixels set to 0).

2. For each (x, y) in the empty patch, apply the warping functionW (x, y) to compute
the corresponding position in the detected image. It will be in floating point and
will fall between the image pixels.

3. Interpolate the intensity values of the 4 closest pixels in the detected image with

• Nearest neighbor or

2



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

• Bilinear interpolation

Example 1. Rotational Warping.
Counterclockwise rotation:

x′ = x cos(θ)− y sin(θ)

y′ = x sin(θ) + y cos(θ)
(2.1)

Bilinear Interpolation

It is an extension of the linear interpolation, for interpolating functions of two variables
on a rectilinear 2D grid. The key idea is to perform linear interpolation in one direction
and then, again, in the other direction. Although each step is linear in the sampled values
and in the position, the interpolation as a whole is not linear but rather quadratic in the
sample location. We have that

I(x, y) = I(0, 0) · (1−x) · (1−y)+I(0, 1) · (1−x) ·y+I(1, 0) ·x · (1−y)+I(1, 1) ·xy (2.2)

Example 2. Affine Warping.
To achieve slight view-point invariance:

• The second moment matrix M can be used to identify the two directions of fastest
and slowest change of intensity around the feature.

• Out of these two directions, an elliptic patch is extracted at the scale computed
with the LoG operator.

• The region inside the ellipse is normalized to a circular one.

However, there exist some disadvantages in using patches as descriptors:

1. If patches are not warped, very small errors in rotation, scale and view-point will
affect the matching score significantly.

2. The procedure is computationally expensive (we need to unwarp every patch).

A better solution nowadays are Histrograms of Oriented Gradients HOGs.

Histogram of Oriented Gradients

• Compute a histogram of orientations of intensity gradients.

• Peaks in the histogram represent dominant orientations.

• Keypoint orientation= histogram peak. If there are multiple candidate peaks,
construct a different keypoint for each such orientation.

• Rotate patch according to this angle: this puts the patches into a canonical form.

3



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

2.2 Scale Invariant Feature Transform (SIFT) Descriptor

The uniqueness of SIFT is that these features are extremely distinctive and can be suc-
cessfully matched between images with very different illumination, rotation, viewpoint,
and scale-changes. The SIFT algorithm performs:

• Identification of keypoint location and scale

• Orientation assignment

• Generation of keypoint descriptor

Descriptor computation is performed as follows:

1. Divide the patch into 4× 4 sub-patches=16 cells.

2. Compute HOG (8 bins, i.e. 8 directions) for all pixels inside each sub-patch.

3. Concatenate all HOGs into a single 1D vector. This is the resulting SIFT descriptor:
4× 4× 8 = 128 values.

4. Descriptor matching: SSD (euclidean-distance).

2.2.1 Intensity Normalization

The descriptor vector v is then normalized such that its l2 norm is 1:

v̄ =
v√∑n
i v

2
i

. (2.3)

Remark. This guarantees that the descriptor is invariant to linear illumination changes.
This was already invariant to additive illumination because it is based on gradients.

2.2.2 SIFT Matching Robustness

• Can handle changes in viewpoint (up to 60 degree out-of-plane rotation).

• Can handle significant changes in illumination (low to bright scenes).

• Expensive: 10fps.

In order to reduce the computational cost, one can use difference of Gaussian instead of
Lapiacian:

LOG ≈ DOG = Gkσ(x, y)−Gσ(x, y) (2.4)

2.2.3 SIFT Detector

SIFT keypoints are local extrema (maxima and minima) in both space and scale of the
DoG images:

• Detect maxima and minima of difference-of-Gaussian in scale space.

• Each point is compared to its 8 neighbors in the current image and 9 neighbors each
in the scales above and below.

4



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

• For each maxima and minima found, the output is its location and the scale: this
is a candidate keypoint.

Is this similar to Harris? While in Harris (keypoint location) the keypoint is identified
in the image plane as local maximum of the corner function, in SIFT the keypoint is a
local minimum or maximum of the DoG image in both position and scale.

Implementation:

1. The initial image is incrementally convolved with Gaussians G(kσ) to produce
images separated by a constant factor k in scale space.

(a) The initial Gaussian G(σ) has σ = 1.6.

(b) k is chosen such that k = 2
1
s , where s in an integer (typically s = 3).

(c) For efficiency reasons, when k reaches 2, the image is downsampled by a factor
of 2 and then the procedure is repeated up to 4 or 6 octaves (pyramid levels).

2. Adjacent image scales are then subtracted to produce the difference-of-Gaussian
(DoG) images.

Figure 1: Difference of Gaussian.

5



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

Summary

• An approach to detect and describe regions of interest in an image.

• SIFT detector = DoG detector.

• SIFT features are reasonably invariant to changes in rotation, scaling, and changes
in viewpoint (up to 60deg) and illumination.

• Real time but still slow (10Hz on an i7 laptop).

The repeatability can be expressed as

number of correspondences detected

number correspondences present
. (2.5)

The highest repeatability is obtained when sampling 3 scales per octave.
Influence of Number of Orientation and Number of Sub-Patches: Single orien-
tation histogram is poor at discriminating, but the results continue to improve up to a
4x4 array of histograms with 8 orientations.

• Descriptor: 4x4x8 = 128-element 1D vector.

• Location: 2D vector.

• Scale of the patch. 1 scalar value.

• Orientation (angle of the patch). 1 scalar value.

SIFT for object recognition

Can be simply implemented by returning as best object match the one with the largest
number of correspondences with the template (object to detect). 4 or 5 point RANSAC
can be used to remove outliers.

2.3 Feature Matching

Given a feature I1, how to find the best match in I2?

1. Define distance function that compares two descriptors (Z)SSD,SAD,NCC, or Ham-
ming distance for binary descriptors (e.g. Census, BRIEF, BRISK).

2. Brute-force matching:

• Test all the features in I2.

• Take the one at minimal distance.

6



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

2.3.1 Issues with Closest Descriptor

Can give good scores to very ambiguous (bad) matches (curse of dimensionality). A better
approach would be to compute the ratio of distances between the first and the second
match:

d(f1)

d(f2)
< Threshold (usually 0.8), (2.6)

where

d(f1) is the distance of the closest neighbor

d(f2) is the distance of the second closest neighbor.
(2.7)

But why is the distance ratio relevant? In SIFT, the nerest neighbor is defined as the
keypoint with minimum euclidean distance. However, many features from a first image
may not have any correct match in a second image because they arise from background
clutter or were not detected at all in the first image. An effective measure is obtained by
comparing the distance of the closest neighbor to that of the second closest neighbor.
Why? Correct matches need to have the closest neighbor significantly closer than the
closest incorrect match, to achieve reliable matching. Moreover, for false matches, there
will likely be a number of other false matches within similar distances due to the high
dimensionality of the feature space (also known as curse of dimensionality). We can
think of the second closest match as the one providing an estimate of the density of false
matches within this portion of the feature space, and at the same time identifying specific
instances of feature ambiguity. Furthermore, the factor 0.8 has been selected because:

• Eliminates 90% of the false matches,

• Discards less than 5% of the correct matches.

2.4 Other Detectors and Descriptors

2.4.1 SURF (Speeded Up Robust Features)

• Based on ideas similar to SIFT.

• Approximated computation for detection and descriptor using box filters.

• Results are comparable with SIFT but

– Faster computation and

– Shorter descriptors.

2.4.2 FAST detector (Features from Accelerated Segment Test)

• Studies intensity of pixels around candidate pixel C.

• C is FAST corner if a set on N contiguous pixels on circle are

– all brighter than intensity(C) + threshold or

– all darker than intensity(C) + threshold.

• Typically tests for 9 contiguous pixels in a 16 pixel circumference.

• Very fast detector (100 Mega pixel/second).

7



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

2.4.3 BRIEF descriptor (Binary Robust Independent Elementary Features)

• Goal: high speed.

• Binary descriptor formation

– Smooth image,

– For each detected keypoint (e.g. with FAST) sample 256 intensity pairs
(pi1, p

i
2), i = 1− 256 within a squared patch around keypoint.

– Create an empty 256-element descriptor.

– For each i-th pair:

∗ if Ipi1 < Ipi2 , then set i-th bit of descriptor to 1.

∗ else to 0.

• The pattern is generated randomly (or by ML) only once: then, same pattern
is used for all patches.

• Pros: Binary Descriptor allows very fast Hamming distance matching: count the
number of bits that are different in the descriptors matched.

• Cons: Not scale/rotation invariant.

2.4.4 ORB descriptor (Oriented FAST and Rotated BRIEF)

• Keypoint detector based on FAST.

• BRIEF descriptors are steered(?) according to keypoint orientation (to provide
rotation invariance).

• Good binary features are learned by minimizing the correlation on a set of training
patches.

2.4.5 BRISK descriptor (Binary Robust Invariant Scalable Keypoints)

• Binary: formed by pairwise intensity comparisons.

• Pattern defines intensity comparisons in the keypoint neighborhood.

• Red circles: size of the smoothing kernel applied.

• Blue circles: smoothed pixel values used.

• Compare short- and long-distance pairs for orientation assignment and descriptor
formation.

• Detector and descriptor speed: circa 10 times faster than SURF.

• Slower than BRIEF, but scale- and rotation- invariant.

2.4.6 Recap

Finally, the different introduced methods are compared in Figure ?? and Table 1

8



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

Figure 2: Recap for detectors and descriptors.

Detector/Descriptor Brief Overview Pros Cons
Harris detector corner Rotation invariant No blob detection, not

scale and affine invariant
SIFT both Blob Rotation, scale and affine

invariant
no corner detection, ineffi-
cient

SURF both Speeded Up Robust Features. Based on ideas similar to SIFT.
Blob detector. Approximated computation for detection and
descriptor using box filters.

Rotation, scale and affine
invariant, faster computa-
tion, shorter descriptor

No corner detection, ineffi-
cient

FAST detector Feastures from Accelerated Segment Test. Studies intensity
of pixels around candidate pixel C. C is FAST corner if
a set on N contiguous pixels on circle are all brighter than
intensity(C) + threshold or all darker than intensity(C) +
threshold.

Very fast detector no blob detection, not
scale and affine invariant

BRIEF descriptor Binary Robust Independent Elementary Features. For binary
see summary. The pattern is generated randomly (or by
ML) only once: then, same pattern is used for all patches.

Very fast Hamming dis-
tance matching: count the
number of bits that are
different in the descriptors
matched.

Not scale or rotation in-
variant

ORB descriptor Oriented FAST and Rotated BRIEF. Keypoint detector based
on FAST. BRIEF descriptors are steered according to keypoint
orientation

Binary features are learned
by minimizing the correla-
tion on a set of training
pathces

BRISK descriptor Binary Robust Invariant Scalable Keypoints. Detect corners
in scale-space using FAST. compare short and long distance
pairs for orientation assignment and descriptor formation

Rotation and scale invari-
ant, 10 times faster than
SURF

Table 1: Recap for detectors and descriptors

9



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

2.5 Understanding Check

Are you able to answer the following questions?

• How does automatic scale selection work?

• What are the good and the bad properties that a function for automatic scale selection
should have or not have?

• How can we implement scale invariant detection efficiently? (show that we can do
this by resampling the image vs rescaling the kernel).

• What is the Harris Laplacian and what is its repeatability after a rescaling of 2?

• What is a feature descriptor? (patch of intensity value vs histogram of oriented
gradients). How do we match descriptors?

• How is the keypoint detection done in SIFT and how does this differ from Harris
Laplacian?

• How does SIFT achieve orientation invariance?

• How is SIFT descriptor built?

• What is the repeatability of the SIFT detector after a rescaling of 2? And for a 50
degrees viewpoint change?

• Illustrate the 1st to 2nd closest ratio of SIFT detection: whats the intuitive reasoning
behind it? Where does the 0.8 factor come from?

10


	Feature Detection
	Scale Changes
	Automatic Scale Selection


	Feature Descriptors
	How to achieve Invariance?
	Re-scaling and De-rotation

	Scale Invariant Feature Transform (SIFT) Descriptor
	Intensity Normalization
	SIFT Matching Robustness
	SIFT Detector

	Feature Matching
	Issues with Closest Descriptor

	Other Detectors and Descriptors
	SURF (Speeded Up Robust Features)
	FAST detector (Features from Accelerated Segment Test)
	BRIEF descriptor (Binary Robust Independent Elementary Features)
	ORB descriptor (Oriented FAST and Rotated BRIEF)
	BRISK descriptor (Binary Robust Invariant Scalable Keypoints)
	Recap

	Understanding Check


