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Lecture 05: Feature Detection I

1 Feature Detection

We previously introduced filters to reduce noise and to enhance contours. However, filter
can also be used to detect features. The principal goal of these filters, is to reduce the
amount of data to process in later stages and discard redoundancy to preserve only what
is useful (lower bandwidth and memory storage). In general, we focus on three different
procedures:

e Edge detection.
e Template matcing.

e Keypoint detection.

1.1 Filters for Template Matching

We want to find locations in an image that are similar to a given template. If we look
at filters as templates, we can use correlation to detect these locations. What if the
template is not identical to the object we want to detect? In order for this to work, we
assume that

e scale,

e orientation,

e illumination and,

e appearance of the template and the object

are similar. What about the objects in the background?

1.1.1 Correlation as Scalar Product

We consider images H and F' as vectors and express the correlation between them as
(H,F) = [[H]| - [|[F[| - cos(0). (1.1)

If we use Normalized Cross Correlation (NCC) (highest complexity), we consider the
unit vectors of H and F, hence, we measure their similarity based on the angle 6. For
identical vectors one gets NCC = 1: this is why one can use NCC as a similarity measure.
Note that NCC is invariant to linear intensity changes! It holds
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where 0.8 represents a condition number.
Other similarity methods are the Sum of Absolute Differences (SAD) (simplest)

SAD = )" > [H(u,v) — F(u,v)|, (1.3)

u=—kv=—Fk

and the Sum of Squared Differences (SSD) (high computational complexity)

SSD = > Y (H(u,v) — F(u,v))*. (1.4)

u=—kv=—"k

The normalized cross correlation (NCC) takes values between -1 and 1, where 1
means identical.

To account for the difference in mean of the two images (caused principally by illumination
changes), we substract the mean value of each image:

e Zero-mean Sum of Absolute Differences (ZSAD)
ko k
ZSAD = SO ST I(H(w,v) = ur) — (F(u,0) — pp). (1.5)
u=—kv=—=k
e Zero-mean Sum of Squared Differences (ZSSD)
ko k
288D = 3" 3 ((H(u,0) — ) — (F(u,0) — pur))* (16)
u=—kv=—"k
e Zero-mean ormalized Cross Correlation (ZNCC)
> ek v (H (1, 0) — ) - (F(u,0) = o)

ZNCC =
VT (Huww) — pm) S S (Flu,v) — pr)?

, (1.7)

with ) N
Zu:—k sz—k H(“? U)

(2N +1)? (1.8)

HE =
Remark. ZNCC is invariant to affine intensity changes.

1.1.2 Census Transform

The Census transform maps an image patch to a bit string. The general rule is that if a
pixel is greater than the center pixel, its corresping bit is set to 1, else to 0. For a
n x n window the string will be n? — 1 bits long. The 2 bit strings are compared using
the Hamming distance, which represents the number of bits which are different. This
can be computed by counting the number of 1s in the exclusive-OR (XOR) of the two bit
strings. The advantages of Census transform are:

e [T is more robust to the object background problem
e No square roots or divisions are required. This means efficiency!

e Intensities are considered relative to the center pixel of the patch making it invari-
ant to monotonic intensity changes.
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1.2 Point-feature Extraction and Matching

Keypoint extraction is the key ingredient of motion estimation! Furthermore this can be
used for panorama stitching, object recognition, 3D reconstruction, place recognition, and
google images.
Why is this method challenging? We need to align images! How? We need to detect point
features in both images and find corresponding pairs to align them. Two big problems
arise from this:

e Problem 1: Detect the same points independently in both images. No chance to
match, need repeatable feature detector.

e Problem 2: For each point, identify its correct correspondence. We therefore need
a reliableand distinctive feature descriptor, which is robust to geometric and
illumination changes.

Geometric changes, are represented by rotation, scale and viewpoint (i.e. perspective)
changes.
INlumination changes, are represented by affine illumination changes of the form

I'(x,y) = al(x,y) + 5. (1.9)

With the term Invariant local features, it is intended a subset of local feature types de-
signed to be invariant to common geometric and photometric transformations. In general
one should

1. detect distinctive interest points and

2. extract invariant descriptors.

1.2.1 Distinctive Features

In order to improve repeatibility, one needs distinctive features. Some features are better
than others (angles, not uniform color,...). It holds:

e Corners: a corner is defined as the intersection of one or more edges. It has high
localization accuracy. It is less distinctive than a blob. Examples of corner
detectors are Harris, Shi-Tomasi, SUSAN, FAST.

e Blobs: a blob is any other image pattern which is not a corner, that differs sig-
nificantly from its neighbors in intensity and texture. This has less localization
accuracy, but is better for place recognition because more distinctive than a corner.
Example of blob detectors are MSER, LOG, DOG, SIFT, SURF, CenSurE.
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1.3 Corner Detection

In the region around a corner, the image gradient must have two or more dominant di-
rections. Corners are repeatable and distinctive.

1.3.1 The Moravec Corner Detector (1980)

We can easily recognize the point by looking through a small window: by shifting the
window, one can give a large change in intensity in at least two directions. Moravec used

SSD, with
e Flat region: no intensity change! (SSD= 0 in all directions).

e Edge: no change along the edge direction (SSD ~0 along edge but > 0 in other
directions).

e Corner: significant change in at least two directions (SSD > 0 in at least 2 direc-
tions).

Sums of squares of differences of pizels adjacent in each of four directions (horizontal,
vertical and two diagonals) over each window are calculated, and the window’s interest
measure is the minimum of these four sums. [Moravec,80]

1.3.2 The Harris Corner Detector (1988)

The Harris Corner Detector implements Moravec corner detector without physically shift-
ing the window and hence just by looking at the patch itself, using differential calculus.
Implementation:

Let I be a grayscale image. We consider the reference patch centered at (x,y) and the
shifted window centered at (x + Ax,y 4+ Ay). The patch has size P. We compute

SSD(Az,Ay) = > (I(z,y) — I(z + Az,y + Ay))°. (1.10)
z,yeP
We define oI(z.y) oI(z.y)
_ 0I(x,y _ 0l(z,y
L=—" Iy= oy (1.11)

and approximate with first order Taylor expansion:
Iz 4+ Az, y+ Ay) = I(z,y) + L,(z,y) Az + I, (z,y) Ay
= SSD(Az, Ay) ~ Z (L(x,y) Az + I,(z,y)Ay)’ (1.12)

z,yeP

This is a simple quadratic function in the deltas!
We can write this in matrix form:

2
SSD(Az, Ay) ~ (Ar Ay)- (IIG} Ijﬁy).@x), (1.13)
z,yeP Yy v y
M

where M is the second moment matrix. Let’s analyze some special cases:
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0 0
e Edge along x: M = (O )\2)

. 0 0
e Flat region: M = (O 0)

» Ao 01 = (500 (0 5) () i)

What if the corner is not aligned with the image axis? The general case has M symmetric,
which can always be decomposed into

M=R". (Aol i) -R. (1.14)

Claim One can visualize this as an ellipse with axis lengths determined by eigenvalues
(1/4/Amax.min) and two axes determined by the eigenvectors of M (columns of R).

M= (v v)- (Aol ;)2) : (Zi) =1 (1.15)

Then, using the quadratic form, one gets

)\1 0 UT
T. . . 1 . 1
x (vl vg) ( 0 /\2) <v§) x =
AzTvv]x + AxTvgulz =1

M (0T2)T (0]2) + A (vlz)T(0]) = 1 (1.16)

(vfx)* | (vix)®

5 T 5 =1,
_1 1
(&) (&)

from which is clear that the eigenvectors vy, v, represent the axis directions of the ellipse
11 .
and \/—A—l, \/—)\—2 their 16Ilgth O

Remark. Large ellipses denote flat region, small ones a corner!

Proof. Let’s consider

Interpreting the eigenvalues:

A corner can then be identified by checking whether the minimum of the two eigenvalues of
M is larger than a certain user-defined threshold. Mathematically, this is the Shi-Tomasi
detector:

R = min(A;, \2) > threshold. (1.17)

e Corner: Ao are large, R > threshold, SSD increases in each direction.
e Edges: A\; > Ay or vice-versa.
e Flat region: both A\; and Ay are small.

Problem: The eigenvalues are expensive to compute: Harris and Stephens suggested to
use:

R =M\ X — k(A + )2 = det(M) — k - trace*(M), k€ (0.04,0.15) (1.18)

>
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Algorithm:

ompute derivatives in x and y directions e.g. with Sobel filter.
I) C d dyd h Sobel fil
(IT) Compute 12,12, I,1,.

x) Y

(IIT) Convolve I2,I7, I, I,, with a box filter to get the sums of each element, which are

the entries of the matrix M. Optionally, use a Gaussian filter instead of a box filter
to give more imoportance to central pixels.

(IV) Compute the Harris Corner Measure R (with Shi-tomasi or Harris).

(V) Find points with large corner response (R > threshold).

(VI) Take the points of local maxima of R.

Repeatability: Can Harris detector re-detect the same image patches (Harris corners)
when the image exhibits changes?

e Corner response R is invariant to image rotation. Shape (eigenvalues) remains
the same. Isotropic!

e Invariant to affine intensity changes: eigenvalues are scaled by a constant factor
but position of the maxima remains the same.

e Not invariant to image scale. Scaling the image by x2 results in 18 % of corre-
spondences get matched.
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1.4

Understanding Check

Are you able to:

FExplain what is template matching and how it is implemented?

Ezplain what are the limitations of template matching? Can you use it to recognize
cars?

Lllustrate the similarity metrics SSD, SAD, NCC, and Census transform? What is
the intuitive explanation behind SSD and NCC?

Explain what are good features to track? In particular, can you explain what are
corners and blobs together with their pro and cons?

FExplain the Harris corner detector ¢ In particular:

— Use the Moravec definition of corner, edge an flat region.

— Show how to get the second moment matriz from the definition of SSD and first
order approximation (show that this is a quadratic expression) and what is the
intrinsic interpretation of the second moment matriz using an ellipse?

— What is the M matriz like for an edge, for a flat region, for an axis-aligned
90-degree corner and for a non-axis- aligned 90-degree corner?

— What do the eigenvalues of M reveal?.
— Can you compare Harris detection with Shi-Tomasi detection?

— Can you explain why is Harris detector invariant to illumination and scale
chances?

— What is the repeatability of the Harris detector after a rescaling of factor 27
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