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Theory Questions

Lecture 01

1. (a) Definition of VO

Answer. VO is the process of incrementally estimating the pose of the vehicle
by examining the changes that motion induces on the images of its onboard
cameras.

(b) VO vs VSLAM vs SFM.

Answer.
SFM > VSLAM > VO.

Structure From Motion (SFM): more general than VO, tackles the prob-
lem of 3D reconstruction and 6DOF pose estimation from unordered image
sets (e.g. reconstruction through flickr).
→ VO focuses on estimating 3D motion sequentially and in real time.
Two images can be taken from the same camera but at different positions and
at different times, where the pose is not unknown

Visual Simultaneous Localization And Mapping (VSLAM):

• VO focuses on incremental estimation and local consistency.

• focus on globally consistent estimation.

• VSLAM = VO + loop detection + graph optimization.

• Tradeoff between performance and consistency, simplificity of implemen-
tation.

• VO doesn’t need to keep track of all previous history of the camera. Good
for real-time.

(c) Assumptions

Answer.

• Sufficient illumination,

• dominance of static scene over moving objects,

• enough texture to allow apparent motion,

• sufficient scene overlap between consecutive frames.

(d) Working Principle

Answer.

I) Compute the relative motion Tk from images Ik−1 to image Ik

Tk =

(
Rk,k−1 tk,k−1

0 1

)
. (1)

II) Concatenate them to recover full trajectory

Cn = Cn−1 · Tn (2)
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III) An optimization over the last m poses can be done to refine locally the
trajectory (Pose-Graph or Bundle Adjustment).

(e) Building Blocks

Answer. VO computes the camera path incrementally, pose per pose

i. Image sequence,

ii. Feature detection (front end),

iii. Feature matching (tracking) (front end).

iv. Motion estimation (2D-2D,3D-3D,3D,2D) (front end),

v. Local optimization (back end).

(f) Dense vs. Semi-Dense vs. Sparse

Answer. Dense and Semi-dense behave similarly in direct methods. Dense is
only useful if one has motion blur and defocus. Sparse methods behave equally
well for image overlaps up to 30% but less robust than the other two when the
distance between frames increases.

(g) Bundle Adjustment vs. Pose Graph Optimization (formulas and explanation)

Answer.

Pose Graph Optimization

So far we assumed that the transformations are between consecutive frames,
but transformation can be computed also between non adjacent frames Tij (e.g.
when features from previous keyframes are still observed). They can be used as
additional constraints to improve cameras poses by minimizing the following:

Ck = argminck

∑
i

∑
j

||Ci − Cj · Tij||2 (3)

• For efficiency, only the last m keyframes are used.

• Gauss-Newton or Levenber-Marquadt are typically used to minimize it.
For large graphs, there are open source things.

Figure 1: Pose graph optimization.

Bundle Adjustment (BA)

This incorporates the knowledge of landmarks (3D points).

X i, Ck = argminXi,Ck

∑
i

∑
k

ρ
(
pik − π(X i, Ck)

)
. (4)
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Outliers are a problem, how can we penalize them? In order to penalize wrong
matches, we can juse the Huber or Turkey cost.

Huber ρ(x) =

{
x2, if |x| ≤ k

k · (2|x| − k) if |x| ≥ k linear

Tukey ρ(x) =

{
α2 if |x| ≥ α

α2 ·
(
1− (1− ( x

α
)2)3
)

if |x| ≤ α.

(5)

Bundle Adjustment vs Pose-graph Optimization

• BA is more precise than pose-graph optimization because it adds additional
constraints (landmark constraints).

• But more costly: O((qM + lN)3) with M and N being the number of
points and camera poses and q and l the number of parameters for points
and camera poses. The Jacobian is cubic in q and l. Workarounds are

– A small window size limits the number of parameters for the optimiza-
tion and thus makes real-time bundle adjustment possible.

– It is possible to reduce the computational complexity by just optimiz-
ing the camera parameters and keeping the 3D landmarks fixed, e.g.
freeze the 3D points and adjust the poses

Figure 2: Tukey vs. Huber norm.

Figure 3: Bundle Adjustment.
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Lecture 02/03

1. Blur Circle

Answer. In optics, a circle of confusion (or blur circle) is an optical spot caused
by a cone of light rays from a lens, not coming to a perfect focus when imaging a
point source.

• There is a specific distance from the lens at which world points are in focus in
the image.

• Other points project to a blur circle in the image with radius

R =
Lδ

2e
(6)

→ a minimal pinhole gives minimal R and
→ R should remain smaller than image resolution.

Figure 4: Blur Circle

2. Thin Lens Equation and Pinhole Approximation

Answer. Starting from Figure 5, one can use similar triangles and write

B

A
=
e

z
and

B

A
=
e− f
f

=
e

f
− 1.

(7)

Toghether, we get the thin lens equation.
e

f
− 1 =

e

z
(8)

By dividing the thin lens equation by parameter e and considering z >> f we get

1

z
=

1

f
− 1

e

0 =
1

f
− 1

e

e ≈ f

(9)
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Figure 5: Thin lens

3. (a) Definition of vanishing points and lines

Answer.

• Straight lines are still straight.

• Length and angles are lost.

• Parallel lines in the world intersect in the image as a vanishing point.

• Parallel planes in the world intersect in the image at a vanishing line.

(b) Prove that the parallel lines intersect at vanishing points and show how to
compute it mathematically.

Answer.

Claim 1. World’s parallel lines intersect at a vanishing point in the camera
image.

Proof. Let’s define two parallel 3D lines:XY
Z

 =

X1

Y1

Z1

+ s ·

 l
m
n

 ,

XY
Z

 =

X2

Y2

Z2

+ s ·

 l
m
n

 .

(10)

The perspective projection equation in calibrated coordinates are

x =
X

Z

y =
Y

Z
.

(11)

Plugging the line equations into the perspective projection equation and letting
s→∞ results in

lim
s→∞

Xi + sl

Zi + sn
=

l

n
= xV P

lim
s→∞

Yi + sm

Zi + sn
=
m

n
= yV P .

(12)
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This result depends only on the direction vector of the line.

In Figure 6 another proof is displayed, the lines intersect to a point at infinity and
the projection of such point in the image returns the vanishing point v. v is related
to d via Eq. 24, where K is the camera matrix. Eq. 25 guarantees that d has unit
norm.

Figure 6: Vanishing point

4. How do you build an Ames room (the floor and the walls); try to sketch a concept

Answer. Have a look at Figure 7

Figure 7: Thin lens

5. Relation between field of view and focal length.
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Figure 8: Scheme for angles.

Answer. With Figure 8, one can compute the field of view

tan

(
θ

2

)
=
W

2f
⇒ f =

W

2

[
tan

(
θ

2

)]−1

(13)

→ smaller FOV = larger focal length.

6. (a) Perspective projection equations including lens distortion and world to camera
projection (derivation of perspective equations in matrix form using homoge-
neous coordinates).

Answer. The procedure reads

i. Change of coordinates from 3D world point Pw to 2D camera frame point
Pc .

ii. Projection from the camera frame to the image plane (x, y).

iii. Change in pixel (u, v).

Figure 9: Frames. Zc = optical axis

Perspective Projection
From similar triangles and Figure 10 one gets from Camera Point Pc to image
plane coords

x

f
=
Xc

Zc
⇒ x =

fXc

Zc
y

f
=
Yc
Zc
⇒ y =

fYc
Zc

(14)
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Figure 10: Figure for perspective projection.

Pixel Coordinates
From local image plane coords (x, y) to the pixel coords (u, v) with scale
factors ku, kv and pixel coords of the camera optical center O = (u0, v0):

u = u0 + kux⇒ u = u0 +
kufXc

Zc

v = v0 + kux⇒ v = v0 +
kvfXc

Zc

(15)

Homogeneous coords for linear mapping from 3D → 2D by introducing an
extra scalar element (the depth of the scene point λ = Zc)

p =

(
u
v

)
︸︷︷︸
pixel

→ p̃ =

 ũṽ
w̃


︸︷︷︸
homog.

= λ

uv
1

 (16)

with (15) and (16) expressed in matrix form readsλuλv
λ

 =

αu 0 u0

0 αv v0

0 0 1

 ·
Xc

Yc
Zc

 = K

Xc

Yc
Zc

 , (17)

with αu, αv focal lengths in pixels and K calibration matrix.

At the end, it holds

λ ·

uv
1

 = (K)︸︷︷︸
3×3, intrinsic

· (I3×3|0)︸ ︷︷ ︸
3×4

·
(
R ~t
0 1

)
︸ ︷︷ ︸

4×4, extrinsic

·


Xw

Yw
Zw
1

 . (18)

We use the notation from homogeneous to euclidean:uv
w


︸ ︷︷ ︸
Homog.

→

u/wv/w
1


︸ ︷︷ ︸
Eucl.

(19)
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Radial Distortion This is a transformation from ideal to distorted coordi-
nates. For most lenses, one writes(

ud
vd

)
= (1 + k1r

2)︸ ︷︷ ︸
higher order dep on

amount of distortion r4

etc.

·
(
u− u0

v − v0

)
+

(
u0

v0

)
, (20)

with
r2 = (u− u0)2 + (v − v0)2. (21)

Based on the Brown-Conrady model. Barrel distortion has distortion coef
k1 < 0. Ask someone: what is the relation between order of the term to the
amount of distortion????

(b) Normalized image coordinates and geometric explanation.

7. (a) Definition of general PnP problem (whats the minimum number of points and
what are the degenerate configurations).

Answer. Given the realitve spatial locations of n control points and given the
angle to every pair of control points from an additional point called the Center
of Perspective CP , find the lengths of the line segments joining CP to each of
the control points.
We assume we know the camera intrinsic parameters. Given known 3D land-
marks in the world and their image correspondence in the camera frame, de-
termine the 6DOF pose of the camera in the world frame. Where is the
camera?

• Given 1 point: ∞ solutions.

• Given 2 points: ∞ bounded solutions.

• Given 3 non collinear points: Finitely many (up to 4) solutions.

• Given 4 points: unique solution.

With 3 points one can use the fact that the angles inscribed in the triangle are
the same: the Carnot’s theorem reads

s2
1,2,3 = L2

B,A,A + L2
C,C,B − 2LB,A,ALC,C,B cos(θBC,AC,AB) (22)

In general, n independent polynomials with n unknowns, can have no more
solution than the product of their degrees: here 8.
→ fourth point to disambiguate the solutions! By defining x = LB

LA
we can

reduce the system to a 4th order equation

G0 +G1x+G2x
2 +G3x

3 +G4x
4 = 0. (23)

This applies to camera pose estimation from known 3D− 2D correspondences
(e.g. hololens).

• L: distance from Camera frame origin C to World point A,B,C

• θ: inscribed angles between e.g. LA and LB

• s: distance between World points e.g. A and B

9
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(b) Working principle of P3P algorithm (non-linear algorithm for calibrated cam-
eras: what are the algebraic trigonometric equations that it attempts to solve?).

(c) How do we solve PnP using a linear algorithm (derive DLT equations for 3D
object or planar grids) and what is the minimum number of point correspon-
dences it requires, why?

Answer. Direct Linear Transform

image point = p̃ =

 ũṽ
w̃

 = λ

uv
1

 = K[R|T ] ·


Xw

Yw
Zw
1



=

αu 0 u0

0 αv v0

0 0 1

 ·
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 ·

Xw

Yw
Zw
1



assuming indep. elements =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34


︸ ︷︷ ︸

M

·


Xw

Yw
Zw
1



=

mT
1

mT
2

mT
3

 ·

Xw

Yw
Zw
1


︸ ︷︷ ︸

P

.

(24)

It follows

u =
ũ

w̃
=
mT

1 · P
mT

3 · P

v =
ṽ

w̃
=
mT

2 · P
mT

3 · P

(25)

and hence

(mT
1 − uimT

3 ) · Pi = 0

(mT
2 − vimT

3 ) · Pi = 0.
(26)

Rearranging the terms you have(
P T

1 0T −u1P
T
1

0T P T
1 −v1P

T
1

)
·

m1

m2

m3

 =

(
0
0

)
. (27)

For n points we have a big 2n× 12 matrix Q.
The problem hence reads

Q ·M = 0, (28)

where Q is known and M is unknown.

Minimal Solution:

10
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• Rank 11 to have unique non-trivial (up to scale) solution M (Q known!).

• Each 3D/2D correspondence provides 2 independent equations.

• 5 + 1
2

correspondences are needed (in fact 6).

Overdetermined Solution:

• More than 6 points.

• Minimize ||QM ||2 with the constraint ||M || = 1 → SVD. The solution is
the eigenvector corresponding to the smallest eigenvalue of QTQ. That’s
because this is the unit vector x that minimizes ||Qx||2 = xTQTQx. This
can be done in matlab with

[U,S,V] = svd(Q);

M = V(:,12);

Degenerated Configurations:

• Points lying on a plane and or along a line passing through the projection
center.

• Camera and points on a twisted cubic (degree 3).

Once we have M , we know from its definition

M = K(R|T ). (29)

Remark.

• We are not enforcing orthogonality of R.

• QR factorization of M , whith R (orth.) and T (upper triangular matrix).

• Or: Using SVD and enforcing that every eigenvalue is 1.

• We can estimate the scale factor (M comes with a scale factor) by dividing
the Frobenius norm of the computed matrix R̃ with the one of the current
estimate.

DLT vs. PnP

• If the camera is calibrated, only R and T need to be determined. PnP
leads to smaller error regarding calibration using same number of points
to estimate pose.

• PnP’s computation time is quite constant with increasing number of points,
while DLT’s computation time increases with the increasing number of
points.

8. (a) Omnidirectional cameras (only definition of central and non central cameras):

Answer. A vision system is said to be central when the optical rays of the
viewed objects intersect in a single point in 3D called projection center or
single effective viewpoint. For hyperbolic and elliptical mirrors, the single
viewpoint property is achieved by ensuring that the camera center coincides
with one of the foci of the hyperbola (ellipse), as reported in Figure 11. The
camera is non-central, if the rays intersect in various points.

(b) What type of mirror ensure central projection?

11
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Figure 11: Central Catadioptric cameras

Answer. Class of rotated (swept) conic shapes: hyperbolical, parabolical, el-
liptical mirrors ensure central projection.

(c) Spherical model: illustrate equivalence between perspective and omnidirectional
model.

Answer. With their landmark paper from 2000, Geyer and Daniilidis showed
that every catadioptric (parabolic, hyperbolic, elliptical) and standard perspec-
tive projection is equivalent to a projective mapping from a sphere, centered
in the single viewpoint, to a plane with the projection center on the perpen-
dicular to the plane and distant ε from the center of the sphere, as you can see
in Figure 12. Let P = (x, y, z) be a scene point in the mirror reference frame
centered in C. We assume that the axis of symmetry of the mirror is perfectly
aligned with the optical axis of the camera. We also assume that the x and y
axes of the camera and mirror are aligned. Therefore, the camera and mirror
frames differ only by a translation along z.

i. Projecting the image point P = (x, y, z) from the mirror reference
frame to the unit sphere

Ps =
P

‖P‖
= (xs, ys, zs) (30)

ii. The point coordinatess are converted to the coordinates of the new ref-
erence frame centered in Cε = (0, 0,−ε) : Pε = (xs, ys, zs + ε). We can
observe that ε ranges between 0 (planar mirror ) and 1 (parabolic mirror).
Its exact value can be obtained by knowing the distance d between the foci
and the latus rectum l.

iii. Project the point Pε onto the normalized image plane distant 1 from
Cε

m̃ = (xm, ym, 1) =

(
xs

zs + ε
,

ys
zs + ε

, 1

)
= g−1(Ps) (31)

12
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Figure 12: Spherical Model

iv. Point m̃ is mapped to the camera image point p̃ = (u, v, 1) through K
→ p̃ = K · m̃, where K is given by

K =

αu αu cot(θ) u0

0 αv v0

0 0 1

 . (32)

By inverting g given by Eq. 31, we can project points from the normalized
image plane back to the unit sphere

Ps = g(m) ∼

 xm
ym

1− ε x2
m+y2

m+1

ε+
√

1+(1−ε2)(x2
m+y2

m)

 (33)

Note that the last row of Ps is obtained by imposing that Ps lies on the
sphere, i.e. xs + ys + zs = 1

Eq. 33 is the core of the projection model of central catadioptric camera. In
case of a planar mirror, ε center of a sphere = 0, Eq. 33 is the same projection
equation of a perspective camera Ps ∼ (xm, ym, 1).

(d) What do we mean by normalized image coordinates on the unit sphere?

Answer. Projecting the image point P = (x, y, z) from the mirror reference
frame to the unit sphere using Eq. 30.

9. Given an image and the associated camera pose, how would you superimpose a virtual
object on the image (for example, a virtual cube). Describe the steps involved.

Answer. For undistorted images:

(a) Convert the image to grayscale

(b) Create a matrix containing all the 3D positions of the checkerboard corners
(meshgrid).

13
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(c) Write a function to project the corners on the image plane (maps points from
the world to the camera frame).

• From matrix K one can recover the rotation matrix R with the Rodriguez
formula

R = I + sin(θ)[k]× + (1− cos(θ))[k]2×. (34)

• The camera poses are the vector t.

• Find the normalized coordinates (divide by third component of the vector).

• Convert to pixel coordinates applying K, i.e. K · xdist.

(d) Undistort images with bilinear transformation. :

• Artifacts due to the facts that some coordinates are non-integer. This is
usually solved by backward warping: warping pixel locations from desti-
nation image (undistorted) to source image (distorted:

Iu(u, v) = Id(Γ(u, v)). (35)

To deal with non-integers, we use nearest neighbor interpolation (closest
integer). Short explanation:
When an image needs to be scaled up, each pixel of the original image needs
to be moved in a certain direction based on the scale constant. However,
when scaling up an image by a non-integral scale factor, there are pixels
(i.e., holes) that are not assigned appropriate pixel values. In this case,
those holes should be assigned appropriate RGB or grayscale values so that
the output image does not have non-valued pixels. Bilinear interpolation
can be used where perfect image transformation with pixel matching is im-
possible, so that one can calculate and assign appropriate intensity values
to pixels. Unlike other interpolation techniques such as nearest-neighbor
interpolation and bicubic interpolation, bilinear interpolation uses values
of only the 4 nearest pixels, located in diagonal directions from a given
pixel, in order to find the appropriate color intensity values of that pixel.
Bilinear interpolation considers the closest 2 ×2 neighborhood of known
pixel values surrounding the unknown pixel’s computed location. It then
takes a weighted average of these 4 pixels to arrive at its final, interpolated
value

(e) Define the world points of the cube vertex and then project them using the
same transform as before.

14
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Lecture 04

Filtering

1. Convolution vs correlation

Answer. Correlation is a metric for similarity between two different signals. Con-
volutions applies one signal to the other.
Convolution:One of the sequences is flipped before sliding over the other. The re-
sulting sequence expresses the amount of overlap of one sequence when it is shifted
over another sequence. Linearity, associativity, commutativity. Notation f ∗ g. In
1D:

f ∗ g =

∫ ∞
−∞

f(τ)g(t− τ)dτ. (36)

Here g is reversed and shifted over f.
In 2D:

G[i, j] = H ∗ F

=
k∑

u=−k

k∑
v=−k

H[u, v]F [i− u, j − v].
(37)

Flip the filter in both dimensions, then slide the filter over the image. In other
words: replacing each pixel with a linear combination of its neighbors. The filter H
is also called kernel or mask. One can change the weights.
Correlation: no flipping before shifting and displays the measure of similarity
between the two sequence, sliding dot product, used in pattern recognition

Figure 13: Convolution. Cross-correlation. Autocorrelation

2. Box filter vs Gaussian filter (what are the pros and cons of either one?)

Answer. Box Filter: spatial domain linear filter in which each pixel in the re-
sulting image has a value equal to the average value of its neighboring pixels in the
input image.

(a) low pass filter (blur)

15
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(b) mask with positive entries that sum to 1

(c) all weights are equal

(d) size : m×m
(e) +: faster than sliding window algorithm

(f) −: aliasing, blurs out details stronger than Gaussian Filter

Gaussian Filter: What if we want the closest pixels to have a higher influence on
the output? More weight on the central pixels, less to the neighbors. (non-uniform
low pass filter)

h(u, v) =
1

2πσ2
e−

u2+v2

2σ2 . (38)

• +: fastest filter from the 3

• −: blurs edges and reduces contrast

What parameter matter?

• Size of the kernel. The Gaussian has generally infinite support but discrete
filters use finite kernels.

• The variance σ2 of Gaussian: determines extent of smoothing (larger variance,
larger smoothing).

3. Gaussian filters: why should we increase the size of the kernel if sigma is large (i.e.
sigma close to the size of the filter kernel?)

Answer. Maintain the Gaussian nature of the filter. If σ too close to size of the
kernel, the coefficient at the edge of the mask is not close to 0. → abrupt change,
not rotational symmetric .

4. Median filter (when do we need a median filter?)

Answer. Removes spikes: good for impulse and salt and pepper noise (linear
smoothing filters do not alleviate that, random high values create high value patches).
Nonlinear filter, which computes the median value and replaces the high value with
that.

• +: Preserves sharp transitions/ edges.

• −: Removes small brightness variations.

5. Boundary issues

Answer. The filter window falls off the edge of the image. We need to pad the
image borders with

• Zero padding (black)

• Wrap around

• Copy edge

• Reflect across edge

16
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Edge Detection

1. Working principle with 1D signal

Answer. Edges are nothing else than sharp intensity changes. The intensity func-
tion along a horizontal scan line f(x) has low values for dark parts. Taking the first
derivative of the intensity function, edges correspond to extrema of derivative.

2. Noise effects

Answer. Considering only a single row or column of the image, if the image has
a lot of noise, the first derivative is even noisier. Hence, we cannot see the edge in
the change of intensity. In practice, differenciating a noisy signal leads to too many
peaks. Solution: first smooth the image (convolution with h), then differentiate.

3. Differential property of convolution

Answer.
∂

∂x
(h ? f) = (

∂

∂x
h) ? f (39)

First derive the filter h(x), then convolution. Smoothed and derived to detect the
noisy intensity function f .

4. How do we compute the first derivative along x and y?

Answer. For discrete data, it holds

df(x, y)

dx
≈ f(x+ 1, y)− f(x, y)

1
. (40)

Partial derivatives of an image are in x (-1,1), in y

(
−1
1

)
. The Gradient of an

image if given by

∇f =
(
∂f
∂x

∂f
∂y

)
(41)

The gradient direction is given as

Θ = tan−1

(
∂f
∂y

∂f
∂x

)
. (42)

The edge strength is given by

||∇f || =

√
(
∂f

∂y
)2 + (

∂f

∂y
)2. (43)

First smoothing with a Gaussian (or other filter), then taking directional derivative
equals convolving image with a Sobel filter = directional/ oriented filter or first
take directional derivative of the Gaussian filter,the convolve the image with the
derivative.

5. Laplacian of Gaussian operator: why should we use it and what effect does it have
on the image?

17
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Answer. This operator is separable. It can be split into directions. Consider

∂2

∂x2
(h ? f) (44)

From above we know the Gaussian filter smooths the image and then taking the
derivatives equals convolving the image directly with the Laplacian of Gaussian
(LoG) filter. Taking the second derivative of the filter, it acts as a band-pass filter
which filters out both low and high frequencies.

6. Properties of smoothing and derivative filters (what is the sum of the coefficients of
a smoothing filter, and of a derivative filter?)

Answer. Smoothing Filter

• Has positive values

• Sums to 1→ preserves brightness of constant regions

• Removes high frequency components.

Derivative Filter

• Has opposite signs, used to get high response in regions of high constrast.

• Sums to 0→ no response in constant regions. If not, uniform zones would have
a gradient in spatial domain, which is not what we want.

• Highlights high frequency components.

7. Illustrate Canny edge detection.

Answer. The process of Canny edge detection algorithm

(a) Convert colour image to grayscale by replacing each pixel by the mean value
of its RGB components

(b) Apply Gaussian filter to smooth the image in order to remove the noise

(c) Compute the gradient of the smoothed image in both directions. (or replace
step 2. and 3. by convolving the image with x and y derivatives of Gaussian
filters)

(d) Discard pixels whose gradient magnitude is below a certain threshold.

(e) Apply non-maximal suppression to get rid of spurious response to edge detec-
tion

The scale parameter σ is selected based on

• the desired level of detail: fine edges vs global edges;

• the noise level;

• the localisation-detection trade off: see template matching.

8. What is non-maxima suppression and how is it implemented?
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Answer. The local maxima is tracked along gradient direction. High intensity
means high probability of the presence of an edge: this is not enough. Only local
maxima can be considered as part of an edge. A local maxima can be found where
the gradient derivative is 0. Due to noise and the multiple response, the filtered
image may contain wide ridges around the local maxima.

(a) From each position (x, y), step in the two directions perpendicular to edge
orientation θ(x, y).

(b) Denote the initial pixel (x, y) by C, the two neighboring pixels in the perpen-
dicular directions by A and B.

(c) If the M(A) > M(C) or M(B) > M(C), discard the pixel (x, y) by setting M(x,
y) = 0.

The non-maxima suppression sets all pixels to zero that are not actually local max-
ima → a thin line in the output.
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Lecture 05/06

Point feature detection

1. What is template matching and how is it implemented? (Mathematical expression)

Answer. Find location in an image that are similar to a template. If we look
at filters as templates, we can use correlation to detect these locations. In the
resulting correlation map, the brighter the spots the more the template correlates
to something on the image.
We consider images H and F as vectors and express the correlation between them
as

〈H,F 〉 = ||H|| · ||F || · cos(θ). (45)

If we use Normalized Cross Correlation (NCC) (highest complexity), we con-
sider the unit vectors of H and F , hence we measure their similarity based on the
angle θ. For identical vectors one gets NCC = 1.

cos(θ) =
〈H,F 〉
||H|| · ||F ||

=

∑k
u=−k

∑k
v=−kH(u, v)F (u, v)√∑k

u=−k
∑k

v=−kH(u, v)2 +
√∑k

u=−k
∑k

v=−k F (u, v)2

> 0.8.
(46)

2. What are the limitations of template matching? Can I use it to recognize any car?

Answer. Template Matching will only work if scale, orientation, illumination
and in general the appearance of the template and the object to detect are very
similar. Hence, this process can only detect cars very similar to the template car,
but not generally cars. → can’t use to recognize any car.

3. Similarity metrics: SSD, SAD, NCC, Census transform. What is the intuitive ex-
planation behind SSD and NCC (hint: represent images as vectors)?

Answer.

• The normalized cross correlation (NCC) takes values between -1 and 1,
1 equals identical. NCC is invariant to linear intensity changes! It holds

NCC =
〈H,F 〉
||H|| · ||F ||

=

∑k
u=−k

∑k
v=−kH(u, v)F (u, v)√∑k

u=−k
∑k

v=−kH(u, v)2 +
√∑k

u=−k
∑k

v=−k F (u, v)2

.
(47)

• Other methods are the Sum of Absolute Differences (SAD) (simplest)

SAD =
k∑

u=−k

k∑
v=−k

|H(u, v)− F (u, v)|, (48)

• the Sum of Squared Differences (SSD) (high computational complex-
ity)

SSD =
k∑

u=−k

k∑
v=−k

(H(u, v)− F (u, v))2. (49)
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• Census Transfrom: It maps an image patch to a bit string. The general rule
is that if a pixel is greater than the center pixel its corresping bit is set
to 1, else to 0. For a n×n window the string will be n2−1 bits long. The 2 bit
strings are compared using the Hamming distance (if bigger than previous
1, else 0, starting from right). The Advantages are

– More robust to object background problem

– No square roots or divisions are required. Efficient!

– Intensities are considered relative to the center pixel of the patch making
it invariant to monotonic intensity changes.

SAD and SSD are not invariant to linear illumination changes. To cope with the
difference, the mean value of each image can be subtracted: Zero-mean Normalized
Cross Correlation is invariant to linear illumination change intensity.
The similarity is computed between the gray intensity levels of the two vectors. If
I1 and I2 are perfect matches, the resultant SAD and SDD will be 0. Intuition is
missing!

4. Feature extraction: what are good feature to track: definition of corners and blobs
and their pros and cons.

Answer. Good features are always perceivable and easily detectable from the
environment. Corners, blobs, lines and points are low-level features (geometric
primitives). Better for detection because they

• can be abstracted from raw date → high conservation of information

• provide lower volume of data while increasing the distinctiveness of each feature

Corners

• Intersection of one or more edges, image gradient has two or more dominant
directions

• Repeatable and distinctive

• Examples of corner detectors are Harris, Shi-Tomasi, SUSAN, FAST.

• +: high localization accuracy → good for VO

• −: less distinctive than a blob

• Change of angle between images should be little

Blob:

• Any other image pattern which is not a corner, that differs significantly from
its neighbors in intensity and texture.

• Examples of blob detectors are MSER, LOG, DOG, SIFT, SURF, CenSurE.

• +: for place recognition because more distinctive than a corner

• −: Localization accuracy

• Center might shift due to shear

5. Harris corner detector :
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(a) Intuitive illustration using Moravec definition of corner, flat region, and edge

Answer. Shifting a window in any direction should give a large change in
intensity (e.g. in SDD) in a least 2 directions

• Flat region: no intensity change! (SSD≈ 0 in all directions).

• Edge: no change along the edge direction (SSD ≈0 along adge but >> 0
in other directions).

• Corner: significant change in at least two directions (SSD >> 0 in at
least 2 directions).

(b) Show how to get to the second moment matrix from the definition of SSD and
first order approximation (show that this is a quadratic expression) and what
is the intuitive interpretation of the second moment matrix using ellipse (what
does the ellipse represent?).

Answer. Let I be a gray scale image. We consider the reference patch centered
at (x, y) and the shifted window centered at (x+ ∆x, y + ∆y). The patch has
size P . We compute

SSD(∆x,∆y) =
∑
x,y∈P

(I(x, y)− I(x+ ∆x, y + ∆y))2 . (50)

We define

Ix =
∂I(x, y)

∂x
, Iy =

∂I(x, y)

∂y
, (51)

and approximate with first order Taylor expansion:

I(x+ ∆x, y + ∆y) ≈ I(x, y) + Ix(x, y)∆x+ Iy(x, y)∆y

⇒ SSD(∆x,∆y) ≈
∑
x,y∈P

(Ix(x, y)∆x+ Iy(x, y)∆y)2 (52)

Simple quadratic function in the deltas! We can write this in matrix
form:

SSD(∆x,∆y) ≈
(
∆x ∆y

)
·
∑
x,y∈P

(
I2
x IxIy

IxIy I2
y

)
︸ ︷︷ ︸

M

·
(

∆x
∆y

)
, (53)

where M is the second moment matrix. The elements from the matrix are
pixel-wise products!

(c) What is the M matrix for an edge, for a flat region, for an axis-aligned 90-degree
corner, and for a non-axis- aligned 90-degree corner?

Answer.

• Edge along x: M =

(
0 0
0 λ2

)
.

• Flat region: M =

(
0 0
0 0

)
• Aligned corner: M =

(
cos(45) − sin(45)
sin(45) cos(45)

)
·
(
λ1 0
0 λ2

)
·
(

cos(45) sin(45)
− sin(45) cos(45)

)
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• Non-axis aligned corner: M is symmetric, decompose it toM = R−1

(
λ1 0
0 λ2

)
R

where the angle 6= π/4 in the rotation matrix R

(d) What do the eigenvalues of M reveal?

Answer. The Eigenvaluess give information about, if the image patch is an
edge or not. The two Eigenvectors identify the directions of largest and small-
est changes of SSD.

Claim 2. One can visualize this as an ellipse with axis lengths determined by
eigenvalues (1/

√
λmax,min) and two axes determined by the eigenvectors of M

(columns of R).

Proof. Since M is symmetric, we can always come to its eigenvalue decompo-
sition. Let’s consider

M =
(
v1 v2

)
·
(
λ1 0
0 λ2

)
·
(
vT1
vT2

)
= 1 (54)

Then, using the quadratic form one gets

xT ·
(
v1 v2

)
·
(
λ1 0
0 λ2

)
·
(
vT1
vT2

)
· x = 1

λ1x
Tv1v

T
1 x+ λ2x

Tv2v
T
2 x = 1

λ1(vT1 x)T (vT1 x) + λ2(vT2 x)T (vT2 x) = 1

(vT1 x)2(
1√
λ1

)2 +
(vT2 x)2(

1√
λ2

)2 = 1,

(55)

from which is clear that the eigenvectors v1, v2 represent the axis directions of
the ellipse and 1√

λ1
, 1√

λ2
their length.

Large ellipses/circles denote flat region or edges, small ones a corner!
A corner can then identified by checking whether the minimum of the two eigen-
values of M is larger than a certain user-defined threshold. Mathematically,
this is the Shi-Tomasi corner detector

R = min(λ1, λ2) > threshold. (56)

Harris corner detector

R = λ1 · λ2 − k(λ1 + λ2)2 = det(M)− k · trace2(M), k ∈ (0.04, 0.15) (57)

• Corner: λ1,2 are large, R > threshold, SSD increases in each direction.

• Edges: λ1 >> λ2 or vice-versa.

• Both small: flat region.

(e) Harris detection vs Shi-Tomasi detection.

Answer. Harris: approximation for the cornerness function

• +: computationally cheaper, most stable corner dtector
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• −: sometimes fails to detect corners

Shi-Thomasi: only uses the Eigenvalues of M

• +: can detect corners even when Harris detection fails

• −: computationally expensive

(f) Is Harris rotation, illumination and scale invariant? Why?

Answer.

• Corner response R is invariant to image rotation because shape (i.e.
eigenvalues) remains the same

• Not invariant against scale changes: refer to Figure 14.

Figure 14: Harris is not scale invariant.

• Invariant to affine intensity changes: eigenvalues are scaled by a con-
stant factor but the position of the maxima remains the same.

(g) What is the repeatability of the Harris detector after a rescaling of 2?

Answer. Repeatability= #correspondences detected
#correspondences present

. 18 % of the possible corre-
spondences are redetected

6. Scale-invariant detection:

(a) How does automatic scale selection work?

Answer. A possible solution is to rescale the patch (bring it to the canonical
scale). A problem with that, is that you have to do it individually for all
patches in one image (complexity (N ·M)2). → We take a local maximum
of the function: the region size for which the maximum is achieved, should be
invariant to image scale. This scale invariant region size is found in each
image independently.

i. Design a function on the image patch, which is scale invariant, i.e., which
has the same value for corresponding regions, even if they are at different
scales.

ii. For a point in one image, we can consider the average intensity as a function
of region size (x-axis).

iii. By comparing the intensity of the same feature in a different scaled
image, we can retrieve the scale of the images when the intensity are the
same.
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iv. When the right scale is found, the patch must be normalized.

(b) What are the good and the bad properties that a function for automatic scale
selection should have or not have?

Answer.

• Good function: single and sharp peaks! (LoG)

• Bad function: flat peak or multiple peaks → assign more region sizes to
have a unique feature. Blobs and corners are the ideal locations!

(c) How can we implement scale invariant detection efficiently? (show that we can
do this by resampling the image vs rescaling the kernel).

Answer. Rescaling the Kernel: Convolve image with kernel to identify
sharp discontinuities:

f = Kernel ∗ Image (58)

It has been shown that the Laplacian of Gaussian kernel is optimal under
certain assumptions

LoF = ∇2G(x, y) =
∂G(x, y)

∂x2
+
∂G(x, y)

∂y2
, (59)

Then, the correct scale is found as local maxima or minima across consecutive
smoothed images. This should be done for several region sizes.
Resampling the Image: an efficient implementation of multi-scale detection
uses the method scale-space pyramid: instead of varying the window size
of the feature detector, the idea is to generate upsampled (enlarge the image,
interpolating) or downsampled versions of the same image. Then, the correct
scale is found as local maxima or minima across consecutive smoothed images.

(d) What is the Harris Laplacian and what is its repeatability after a rescaling of
2?

Answer. The Harris-Laplacian is a multiscale Harris detector and has a
much higher repeatability rate across different scales than the normal Harris
detector. After rescaling of 2, the repeatability rate is ca. 65 %.

Point feature descriptor and matching

1. What is a feature descriptor? (patch of intensity value vs histogram of oriented
gradients). How do we match descriptors?

Answer. A feature descriptor is an algorithm which takes an image and outputs
feature descriptors/feature vectors. Feature descriptors encode interesting informa-
tion into a series of numbers and act as a sort of numerical fingerprint that can be
used to differentiate one feature from another.

• Simplest Descriptor: Intensity values within a squared patch or gradient
histogram.

(a) Start with an empty canonical patch (all pixels set to 0).

(b) For each pixel in the empty patch apply the warping function W (x, y)
of the corresponding position in the detected image.
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(c) Interpolate the intensity values of the 4 closest pixels in the detected image
using nearest neighbor or bilinear interpolation

I(x, y) = I(0, 0)·(1−x)·(1−y)+I(0, 1)·(1−x)·y+I(1, 0)·x·(1−y)+I(1, 1)·xy.

Using the eigenvalues (size) and the eigenvectors (direction) of the Harris
detector as warp information, slight view-point invariance can be achieved.
Cons: if not warped, very small errors in rotation, scale and view-point will
affect matching score significantly, computationally expensive

• Census transform or Histograms of Oriented Gradients (HOG).

(a) Compute a histogram of orientations of intensity gradients

(b) Peaks in histogram = dominant orientations

(c) Keypoint orientation = histogram peak, if there are multiple candi-
date peaks, construct a different keypoint for each such orientation

(d) Rotate patch according to this angle → puts the patches into a canonical
orientation

Figure 15: Rotation of a patch. Sum up the magnitude of vectors with the same orienta-
tion

The matching can be done using Hamming Distance (Census) or (Z)SSD,(Z)SAD,
(Z)NCC.

2. Scale Invariant Feature Transform detection and descriptor:

(a) How is the keypoint detection done in SIFT and how does this differ from
Harris Laplacian?

Answer. The SIFT algorithm:

• Identification of Keypoint location and scale.

• Orientation assignment.

• Generation of keypoint descriptor.

• Can handle changes in viewpoint (up to 60 degree out-of-plane rotation).

• Can handle significant changes in illumintation.

• Computationally expensive.

SIFT keypoints are local extrema (maxima and minima) in both space and
scale of the DoG images:
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i. The initial image is incrementally convolved with Gaussians G(kσ)
to produce images separated by a constant factor k in scale space.

A. The initial Gaussian G(σ) has σ = 1.6.

B. k is chosen such that k = 2
1
s , where s in an integer (typically s = 3).

C. For efficiency reasons, when k reaches 2, the image is downsampled by
a factor of 2 and then the procedure is repeated up to 4 or 6 octaves
(pyramid levels).

One image blurred with different strong Gaussian filter → shows different
level of details

ii. Adjacent image scales are then subtracted to produce the difference-of-
Gaussian (DoG) images.
eg Image(kernel=3)-image(kernel=5) → fine details as twigs and hair can
be seen
↑ kernel → larger patches bright and dark spots

iii. Detect maxima and minima of Difference-of-Gaussian in scale space.

iv. Each point is compared to its 8 neighbors in the current image and 9
neighbors each in the scales above and below.

v. For each max and min found, the output is the location and the scale: this
is a candidate keypoint.

Main difference to Harris-Laplacian:keypoint location While in Harris, the
keypoint is identified in the image plane as local maximum of the corner func-
tion, in SIFT the keypoint is a local minimum or maximum of the DoG image
in both position and scale.

(b) How does SIFT achieve orientation invariance?

Answer. The descriptor makes the SIFT robust to rotation, small changes
of illumination, scale and viewpoint. Each keypoint is assigned to a specific
orientation to make it invariant to image rotation.

i. for every pixel around the keypoint, the intensity gradient (mag + orien-
tation) is computed

ii. pixel weighted by mag → HOG

iii. orientation corresponding to the highest peak is assigned to the keypoint

iv. all the properties of the keypoint will be measured relative to the keypoint
orientation

(c) How is SIFT descriptor built?

Answer. Descriptor computation:

i. Divide the patch into 4× 4 sub-patches=16 cells.

ii. Compute HOG (8 bins, i.e. 8 directions) for all pixels inside each sub-
patch. see Figure 15

iii. Concatenate all HOGs into a single 1D vector. This is the resulting SIFT
descriptor: 4× 4× 8 = 128 values.

iv. Descriptor matching: SSD (euclidean-distance).

(d) What is the repeatability of the SIFT detector after a rescaling of 2?
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Answer. The repeatability can be expressed as

number of correspondences detected

number correspondences present
(60)

The highest repeatability is obtained when sampling 3 scales per octave.
Detected ∼ 90%
Correctly matched around 80 %

(e) And for a 50 degree viewpoint change?

Answer. Correctly matched, location only 73 %, location and orientation
65 %

(f) Illustrate the 1st to 2nd closest ratio of SIFT detection: whats the intuitive
reasoning behind it?

Answer. While brut-force feature matching, issues with closest descriptor
can happen. This can give good scores to very ambiguous (bad) matches, due
to background clutter or were not detected in the image 1. The better approach
is to compute ration of distances to 1st to 2nd closes match:

d(f1)

d(f2)
< Threshold (usually 0.8), (61)

where

d(f1) is the distance of the closest neighbor

d(f2) is the distance of the second closest neighbor
(62)

Correct matches need to have the closest neighbor significantly closer than
the closest incorrect match, to achieve reliable matching. Moreover, for false
matches, there will likely be a number of other false matches within similar
distances due to the high dimensionality of the feature space. (aka curse of
dimensionality). We can think of the second closest match as providing an
estimate of the density of false matches within this portion of the feature space,
and at the same time identifying specific instances of feature ambiguity.

(g) Where does the 0.8 threshold come from?

Answer.

• Eliminates 90% of the false matches,

• Discards less than 5% of the correct matches.

3. Brief overview of FAST, SURF, BRIEF, ORB and BRISK. Pros and cons of Harris,
SIFT, SURF and FAST and BRIEF, ORB and BRISK in terms of localization
accuracy, relocalization, and efficiency (see recap table in the slides).

Answer. Summary Table 1 and Figure 16.

4. Describe two different ways of tracking features between frames (hint: exercises and
VO project) ????
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Detector/Descriptor Brief Overview Pros cons
Harris detector corner rotation invariant no blob detection, not

scale and affine invariant
SIFT both blob rotation, scale and affine

invariant
no corner detection, ineffi-
cient

SURF both Speeded Up Robust Features. Based on ideas similar to SIFT.
blob detector. Approximated computation for detection and
descriptor using box filters.

rotation, scale and affine
invariant, faster computa-
tion, shorter descriptor

no corner detection, ineffi-
cient

FAST detector Feastures from Accelerated Segment Test. Studies intensity
of pixels around candidate pixel C. C is FAST corner if
a set on N contiguous pixels on circle are all brighter than
intensity(C) + threshold or all darker than intensity(C) +
threshold.

very fast detector no blob detection, not
scale and affine invariant

BRIEF descriptor Binary Robust Independent Elementary Features. For binary
see summary. The pattern is generated randomly (or by
ML) only once: then, same pattern is used for all patches.

very fast Hamming dis-
tance matching: count the
number of bits that are
different in the descriptors
matched.

not scale or rotation in-
variant

ORB descriptor Oriented FAST and Rotated BRIEF. Keypoint detector based
on FAST. BRIEF descriptors are steered according to keypoint
orientation

binary features are learned
by minimizing the correla-
tion on a set of training
pathces

BRISK descriptor Binary Robust Invariant Scalable Keypoints. Detect corners
in scale-space using FAST. compare short and long distance
pairs for orientation assignment and descriptor formation

rotation and scale invari-
ant, 10 times faster than
SURF

Table 1: Summary Descriptor Table

Figure 16: Recap for detectors and descriptors

Answer. Find a set of likely feature locations in a first image and to then search
for their corresponding locations in subsequent images.

(a) Detect good features which have high eigenvalues in the auto-correlation matrix
to provide stable locations at which to find correspondences. Use Harris corner
detector

(b) Assign descriptors to the keypoints using HOG

(c) Or use SIFT detection and descriptor in step 1. and 2.

(d) In subsequent images, search for locations where the corresponding descriptor
has low SSD.
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Lecture 07 Multiple view geometry 1

1. SFM vs 3D reconstruction: definition.

Answer.

• 3D reconstruction from multiple views

– Assumption: K,T,R are known.

– Goal: Recover the 3D structure from images.

• Structure from motion

– Assumption: K,T,R are unknown.

– Goal: Recover simultaneously 3D scene structure and camera poses (up
to scale) from multiple images.

2. Stereo vision:

(a) Definition of disparity. Simplified case and general case

Answer. Disparity means a great difference. Stereopsis is a term that is most
often used to refer to the perception of depth and 3-dimensional structure
obtained on the basis of visual information of a left and a right image. →
Stereo Vision
The basic principle behind stereo vision is triangulation.

• Gives reconstruction as intersection of two rays.

• Requires camera pose (calibration) and point correspondence (match-
ing pairing points of the two images which are the projection of the same
point in the scene).

There are basically two cases

i. Simplified case: identical cameras are aligned. The two cameras are iden-
tical, meaning that they have the same focal length, and are aligned
with the x-axis.

ii. General case: different cameras are not aligned. Two identical cameras
do not exist in nature! Aligning both cameras on a horizontal axis is
very hard. in order to use a stereo camera → Find Extrinsic (R, t) and
Intrinsic (f, C, radialdistortion) parameters. → camera calibration (Tsai
or Homographies)

(b) Mathematical expression of depth as a function of baseline, disparity and focal
length?

Simple Case of Stereo Vision

If we have a world point Pw, a distance from the axis to
the point ZP , a distance between the cameras b, focal
length f and pixel coordinates from the corresponding
world points u, v, we can use similar triangles from
Figure 2b and get

f

ZP
=

ul
XP

f

ZP
=
−ur

b−XP

⇒ XP =
ul · b
ul − ur

⇒ ZP =
b · f
ul − ur

.

(63)
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Figure 17: Simplified case and General case

Observation from this equation are

• Distance ZP is inversely proportional to disparity: the distance to near
objects can be measured more accurately than that to distant objects.

• Disparity: ul − ur and proportional to b. For a given disparity error, the
accuracy of depth estimate increases with increasing baseline b. increasing
disparity with the distance of the objects from the fixation point

• As b is increased, since the distance of the two cameras is increased, some
objects may appear in one camera but not in the other (field of view of
cameras). These objects won’t have disparity.

• If the baseline b is unknown it is possible to reconstruct the scene up to
a scale (structure from motion!)

(c) Apply error propagation to derive expression of depth uncertainty. How can we
improve the uncertainty?

Answer.

ZP =
b · f
ul − ur

→ σdepth =

√
(
∂Zp
∂b

)2σ2
b + (

∂Zp
∂f

)2σ2
f + (

∂Zp
∂ul

)2σ2
ul + (

∂Zp
∂ur

)2σ2
ur

(64)
Increase baseline or focus. Decrease depth, ul or ur

(d) Large baseline vs small baseline.

Answer.

• Too small:

– Large depth error

– Quantification of error as a function of the disparity?

• Too large:

– Minimum measurable distance increases.

– Difficult search problem for close objects.

(e) What is the closest depth a stereo camera can measure? Can you derive it
mathematically?
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Answer. In a simplified case, ul = image width/2, ur = −image widht/2,

where the depth ZP =
b · f
ul − ur︸ ︷︷ ︸
↑

→↓ ZP

(f) Stereo vision general case: show mathematically how we can compute the in-
tersection of two lines, both linearly and non linearly.

Answer. Lines do not always intersect in the 3D space: we want to minimize
the error. For the two cameras we have

p̃l = λl ·

ulvl
1

 = Kl ·

Xw

Yw
Zw

 , p̃r = λr ·

urvr
1

 = Kr ·R ·

Xw

Yw
Zw

+ T. (65)

Triangulation: The problem of determining the 3D position of a point given
a set of corresponding image locations and known camera poses.
In order to triangulate, we use least-squares approximation:

λ1 ·

u1

v1

1

 = K · [I|0] ·


Xw

Yw
Zw
1

⇒ λ1p1 = M1 · P left camera.

λ2 ·

u2

v2

1

 = K · [R|T ] ·


Xw

Yw
Zw
1

⇒ λ2p2 = M2 · P right camera.

(66)

Triangulation: least-squares approximation We solve for P and get a sys-

tem A ·
(
λ1

λ2

)
= b, which cannot be inverted (A is 3×2). We use pseudoinverse

approximation (least squares) and get

AT · A ·
(
λ1

λ2

)
= AT · b⇒

(
λ1

λ2

)
= (AT · A)−1 · AT · b. (67)

Remark. This is a problem with 6 equations and 5 unknowns: the 3 element
of the coordinates of the world point and the two depth factors λ1, λ2.

Triangulation: Nonlinear approach: We want to find P that minimizes
the sum of squared reprojection error

SSRE = d2(p1, π1(P )) + d2(p2, π2(P )), (68)

where
d(p1, π1(P )) = ||p1 − π1(P )|| (69)

is called reprojection error. The observed point is p1, p2 and the reprojected
one is M1P,M2P . In practice, this is done by initializing P using linear ap-
proach and then minimize SSRE using Gauss-Newton of Levenberg-Marquardt.

(g) What is the geometric interpretation of the linear and non linear approaches
and what error term do they minimize? (write it mathematically).
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Answer. Geometric Interpretation: Given the projections p1,2 of a 3D
point P in two or more images, we want to find the coordinates of the 3D
point by intersecting the two rays corresponding to the projections. We want
to find the shortest segment connecting the two viewing rays and let P be the
midpoint of the segment. The two rays won’t meet exactly because of noise
and numerical errors.
Reprojection error

d(p1, π1(P )) = ||p1 − π1(P )|| (70)

(h) Correspondence problem: epipolar geometry; definition of epipole, epipolar line,
and epipolar plane.

Answer. Given a point p in a first image, where is its corresponding point p′

in the right image?
Correspondence Search: Identify image patches in the left and in the right
images, corresponding to the same scene structure. Similarity measures:

• (Z)ZNCC

• (Z)SSD

• (Z)SAD

• Census Transform

To make the search less computationally expensive, search in 1D. Potential
matches for p have to lie on the corresponding epipolar line l′.

• epipole is the projection of the optical center on the other camera image.

• epipolar line is the projection of the infinite ray π−1(p) corresponding to
p in the other camera image. Since π(p) = λK, π(p)−1 = λK−1p. This
makes sense: if we observe a projection p1 in the left camera, this can
correspond to each world point lying on the infinite ray (every one of these
points would project into p1). All these points have a different projection
on the right camera, which in 2D forms the epipolar line.

• epipolar plane is uniquely defined by the two optical centers Cl, Cr and
one image point p

(i) Draw epipolar lines for two converging cameras, for a forward moving camera,
for a side-moving camera.

Answer. Convergence Plane is where the focus of two cameras meet /
attention of screen.

• Two converging cameras: see Figure 19 tilted. All epipolar lines inter-
sect at the epipole! As the position of the 3D point varies, the epipolar
line rotates about the baseline.

• Forward moving camera the line are radiating from the epipolar point. in
both images the coordinates of the epipolar point is the same

• Side-moving camera the line is horizontal and the epipolar point is at
infinity

3. Stereo rectification and mathematical derivation of rectifying homographies.
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Figure 18: Epipolar lines and epipoles.

Answer. Stereo rectification waprs left and right images into new rectified images,
whose epipolar lines are aligned to the baseline.
Goal: make correspondence search simpler and more efficient, because search is
done along the horizontal line of the recitified images.

(a) compute homographies for each imput image reprojection

(b) project image planes onto a common plane parallel to the baseline

(c) epipolar lines are horizontal and the scanlines of the left and right image are
aligned

Mathematical derivation

(a) The perspective equation for a point in the world is

image point = p̃ =

 ũṽ
w̃

 = λ

uv
1

 = K[R|T ] ·


Xw

Yw
Zw
1

 . (71)

This can be rewritten in a more convenient way by considering [R|T ] as the
transformation from the world to the Camera frame (T expressed as C):

λ

uv
1

 = K ·R−1 ·

Xw

Yw
Zw

− C
 (72)

(b) We can then write the Perspective Equation for the Left and Right cameras:
we assume for generality that they have the same intrinsic parameters:

λL ·

uLvL
1

 = KL ·R−1
L ·

Xw

Yw
Zw

− CL
 left camera

λR ·

uRvR
1

 = KR ·R−1
R ·

Xw

Yw
Zw

− CR
 right camera

(73)
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(c) The goal of stereo rectification is to warp left and right camera images such
that their focal planes are coplanar and the intrinsic parameters are identical.
It follows

λL ·

uLvL
1

 = KL ·R−1
L ·

Xw

Yw
Zw

− CL
→ λL ·

uLvL
1

 = K ·R−1 ·

Xw

Yw
Zw

− CL


λR ·

uRvR
1

 = KR ·R−1
R ·

Xw

Yw
Zw

− CR
→ λR ·

uRvR
1

 = K ·R−1 ·

Xw

Yw
Zw

− CR


(74)

(d) By solving for

Xw

Yw
Zw

 for each camera, we can compute the Homography (or

warping) that needs to be applied to rectify each camera image:

λL ·

uLvL
1

 = λL ·K ·R
−1 ·RL ·K−1

L︸ ︷︷ ︸
homography left camera

·

uLvL
1


λR ·

uRvR
1

 = λR ·K ·R
−1 ·RR ·K−1

R︸ ︷︷ ︸
homography right camera

·

uRvR
1

 (75)

(e) The new K,R can be chosen as

K =
KL +KR

2
R = [r1, r2, r3],

(76)

where r1, r2, r3 are the column vectors of R. These can be computed as

r1 =
C2 − C1

||C2 − C1||
r2 = r3 × r1 where r3 is the third column of RL

r3 = r1 × r2.

(77)

For more details have a look at A compact alg. for rectification of stereo pairs.

4. Disparity map. How is it computed?
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Answer. A disparity map appear as a grayscale image where the intensity of every
pixel point is proportional to the disparity of that pixel in the left and right image:
objects that are closer to the camera appear lighter, while farther objects appear
darker. Input to dense 3D reconstruction

(a) For each pixel in the left image, find its corresponding point in the right image.

(b) Compute the disparity for each pair of correspondences.

(c) Visualized in gray-scale or color coded image.

Close objects experience bigger disparity. They appear brighter in disparity map.
The depth Z can be computed from the disparity by recalling that

ZP =
bf

ul − ur
(78)

This is really useful for obstacle avoidance. Challenges include: occlusion, repetition,
non-lambertian surfaces (specularities), textureless surfaces. This is important for
obstacle avoidance.

5. How to establish stereo correspondences with subpixel accuracy?

Answer. From slides and Szeliski book ,

• To average noise effect, use a window around the point of interest

• Neighborhoods of corresponding points are similar in intensity patterns(NCC,
SSD etc.)

• Occluded areas can be detected using cross-checking, i.e., comparing left-to-
right and right-to-left disparity maps.

• Associate confidences with per-pixel depth estimates, which can be done by
looking at the curvature of the correlation surface, i.e., how strong the minimum
in the DSI image is at the winning disparity. ↑ confidence ∝ strong texture

6. Describe one or more simple ways to reject outliers in stereo correspondences.

Answer. A median filter can be applied to clean up spurious mismatches, and
holes due to occlusion can be filled by surface fitting or by distributing neighboring
disparity estimates

• Uniqueness: only one match in right image for every point in left image.

• Ordering: points on same surface will be in same order in both views

• Disparity gradient: disparity changes smoothly between points on the same
surface.

7. Is Stereo Vision the only way of estimating depth information? If not, list alternative
options.

Answer.

• Graph Cuts: is formulated in terms of energy minimization. solving a maxi-
mum flow problem in a graph

• Ground Truth: information provided by direct observation
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Lecture 08/09 Multiple view geometry 2 and 3

1. Whats the minimum number of correspondences required for calibrated SFM and
why?

Answer. In stereo vision, only 5 degrees of freedom are measurable. The camera
relative pose is unknown: this is e.g. the case when the two images are taken from
the same camera but at different times and positions.
Problem formulation: Given n point correspondences between two images, {pi1 =
(ui1, v

i
1), pi2 = (ui2, v

i
2)}, simultaneously estimate the 3D points P i, the camera

relative-motion parameters (R, T ), and the camera intrinsics K1, K2 that satisfy:

λ1 ·

ui1vi1
1

 = K1 · [I|0] ·


X i
w

Y i
w

Zi
w

1

 ,

λ2 ·

ui2vi2
1

 = K2 · [R|T ] ·


X i
w

Y i
w

Zi
w

1


(79)

We have two cases then:

Calibrated Cameras (K1, K2 known)

For convenience, we use normalized image coordinatesūv̄
1

 = K−1 ·

uv
1

 . (80)

We want to find R, T, P i which satisfy

λ1 ·

ūi1v̄i1
1

 = K1 · [I|0] ·


X i
w

Y i
w

Zi
w

1

 ,

λ2 ·

ūi2v̄i2
1

 = K2 · [R|T ] ·


X i
w

Y i
w

Zi
w

1

 .

(81)

Scale Ambiguity: If we rescale the entire scene by a constant factor (i.e. similarity
transformation), the projections (in pixels) of the scene points in both images remain
the same (because the angles remain the same).

• In monocular vision it is not possible to recover the absolute scale of the
scene.

• In stereo vision, only 5 degrees of freedom are measurable:
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– 3 parameters to describe the rotation.

– 2 parameters for the translation up to a scale (we can only compute
the direction of translation but not its length (magnitude)).

How many knowns and unknowns?

• 4n knowns: n correspondences, each one (ui1, v
i
1) and (ui2, v

i
2), i = 1, . . . , n.

• 5 + 3n unknowns: 5 for the motion up to a scale (3 rotation and 2 translation)
and 3n which is the number of coordinates of the n 3D points.

It should hold

4n ≥ 5 + 3n

⇒ n ≥ 5.
(82)

2. Derive the epipolar constraint.

Answer.

p̄1 =

ū1

v̄1

1

 , p̄2 =

ū2

v̄2

1

 (83)

We can observe that p1, p2, T are coplanar:

pT2 · n = 0 → pT2 · (T × p′1) = 0 → pT2 · (T × (Rp1)) = 0
→ pT2 · [T ]x ·Rp1 = 0 → pT2 · E · p1 = 0

is the epipolar constraint, where E = [T ]x ·R is the essential matrix.

(84)

Figure 19: Epipolar Constraint.

3. Definition of Essential matrix.

Answer. Essential matrix E is a 3x3 matrix which maps a point p1 from image 1
onto a line l2 = Ep1 in image 2 , since pT2 l1 = 0

pT2 · E · p1 = 0 (85)

Skew-symmetric matrix of a

a× b =

 0 −az ay
az 0 −ax
−ay ax 0

 ·
bxby
bz

 = [a]x · b (86)
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4. The 8-point algorithm (derivation).

Answer. Starting from
pT2 · E · p1 = 0 (87)

, each pair of point correspondences provides a linear equation. For n points we can
write


ū1

2 · ū1
1 ū1

2 · v̄1
1 ū1

2 v̄1
2 · ū1

1 v̄1
2 · v̄1

1 v̄1
2 ū1

1 v̄1
1 1

ū2
2 · ū2

1 ū2
2 · v̄2

1 ū2
2 v̄2

2 · ū2
1 v̄2

2 · v̄2
1 v̄2

2 ū2
1 v̄2

1 1
...

...
...

...
...

...
...

...
...

ūn2 · ūn1 ūn2 · v̄n1 ūn2 v̄n2 · ūn1 v̄n2 · v̄n1 v̄n2 ūn1 v̄n1 1


︸ ︷︷ ︸

Q (known)

·



e11

e12

e13

e21

e22

e23

e31

e32

e33


︸ ︷︷ ︸
Ē unknown

= 0 (88)

This problem can be written as

Q · Ē = 0. (89)

Two types of solution

• Minimal Solution

– Qn×9 should have rank 8 to have unique (up to scale) non trivial solution
Ē.

– Each point correspondence provides 1 independent equation.

– Thus, 8 point correspondences are needed.

• Over-determined Solution

– n > 8 points.

– A solution is to minimize ||Q · Ē||2 subject to the constraint ||Ē||2 = 1.
The solution is the eigenvector corresponding to the smallest eigenvalue of
matrix QT ·Q.

– This can be solved with Singular Value Decomposition = [U,E, V ]. Last
column of the V → E → reshape(E)

• Degenerate Solution if 3D points are coplanar. There is the 5 point algo-
rithm which holds also for coplanar points.

5. How many rotation and translation combinations can the essential be decomposed
in?

Answer. 4, but only one solution where points are in front of both cameras. A
valid R has det(R) = 1. Ff not, invert the sign of the matrix.

6. Geometric interpretation of the epipolar constraint.
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Answer. If the epipolar constraint

pT2 · E · p1 6= 0 (90)

It means that the projection from p1 is not orthogonal to p2. Hence,

p̄T2 · E · p̄1 = ||p̄2|| · ||E · p̄1|| · cos(θ) (91)

which is not zero is p1, p2, T are not co-planar and θ 6= 90.

7. Relation between Essential and Fundamental matrix.

Answer. If the cameras are uncalibrated ⇒ K1, K2 are unknown.
Assumption, Intrinsic parameters are known. It holds

p̄T2 · E · p̄1 = 0, (92)

where ūi1v̄i1
1

 = K−1
1 ·

ui1vi1
1

 ,

ūi2v̄i2
1

 = K−1
2 ·

ui2vi2
1

 . (93)

By rewriting the constraint, one obtainsui2vi2
1

T

·K−T2 · E ·K−1
1 ·

ui1vi1
1

 = 0

ui2vi2
1

T

· F ·

ui1vi1
1

 = 0,

(94)

where F is the fundamental matrix, which can be computed as

F = K−T2 · E ·K−1
1 = K−T2 · [T ]x ·R ·K−1

1 . (95)

8. Why is it important to normalize the point coordinates in the 8-point algorithm?
Describe one or more possible ways to achieve this normalization.

Answer. In case the camera is uncalibrated, matrix Q of equation Q · F = 0 con-
tains orders of magnitudes difference between columns. → least-squares yields poor
results. → Poor numerical conditioning, which makes results very sensitive to noise.

9. Normalized 8-point algorithm.

Answer. This estimates the Fundamental matrix on a set of Normalized corre-
spondences (with better numerical properties) and then unnormalizes the result
to obtain the fundamental matrix for the original given correspondences.
Idea: Transform image coordinates so that they are in the range [−1, 1] × [−1, 1].
One way is to apply the following rescaling and shift A more popular is to rescale the
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Figure 20: Shift for normalized algorithm.

two point sets such that the centroid of each is 0 and the mean standard deviation√
2. This can be done for every point as follows

p̂i =

√
2

σ
· (pi − µ), (96)

where

µ =
1

N

n∑
i=1

pi (97)

is the centroid of the set and σ = 1
N

∑n
i=1 ||pi−µ||2 is the mean standard deviation.

This transformation can be expressed in matrix form

p̂i =


√

2
σ

0 −
√

2
σ
µx

0
√

2
σ
−
√

2
σ
µy

0 0 1

 · pi. (98)

The algoritm at the end reads

(a) Normalize point correspondences: p̂1 = B1 · p1, p̂2 = B2 · p2.

(b) Estimate F̂ using normalized coordinates p̂1, p̂2.

(c) Compute F from F̂ :

p̂T2 · F̂ · p̂1 = 0

pT2 ·BT
2 · F̂ ·B1 · p1 = 0

⇒ F = BT
2 · F̂ ·B1

(99)

A valid fundamental matrix must have # rank = # points and hence det(F)=0

10. Quality metrics for Fundamental matrix estimation (directional error, epipolar line,
and reprojection error).

Answer. We need to check the numerical results because there are orders of mag-
nitude difference between the columns → least-squares yields poor results
Directional Error Sum of the angular distances to the Epipolar plane: err =∑

i(cos(θi))
2, where

cos(θ) =

(
pT2 · E · p1

||pT2 || · ||E · p1||

)
(100)
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Epipolar Line Distance Sum of Squared Epipolar-Line-to-point Distances

err =
N∑
i=1

d2(pi1, l
i
1) + d2(pi2, l

i
2). (101)

Cheaper than reprojection error: does not require point triangulation!

Figure 21: Epipolar Line Distance.

Reprojection Error

Sum of the Squared Reprojection Errors

err =
N∑
i=1

||pi1 − π1(P i)||2 + ||pi2 − π2(P i, R, T )||2 (102)

Computation is expensive because of point triangulation, but is the most accurate!

Figure 22: Reprojection Error.

RANSAC

1. Why do we need RANSAC?

Answer. Matched points are usually contaminated by outliers. Causes for this
are

• Change in view point and illumination
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• Image noise

• Occlusions

• Blur

The task of removing them is for Robust Estimation.

2. What is the theoretical maximum number of combinations to explore?

Answer. Ransac is the standard method for model fitting in the presence of
outliers (noise points or wrong data). It can be applied to all problems where
the goal is to estimate parameters of a model from the data. An easy example is
RANSAC for line fitting:

(a) Select sample of 2 points at random.

(b) Calculate model parameters that fit the data in the sample.

(c) Calculate error function for each data point.

(d) Select data that supports current hypothesis.

(e) Repeat.

(f) Select the set with the maximum number of inliers obtained within k iterations.

Theoretical maximum number combinations to explore N(N − 1)/2. Computa-
tionally unfeasibe if N is too large!

3. After how many iterations can RANSAC be stopped to guarantee a given success
probability?

Answer. Let w be the number of inliers/N , N be the total number of data points.
We can think of w as

w = P (selecting an inlier-point out of the dataset). (103)

We assume that the 2 points necessary to estimate a line are selected independently,
i.e.

w2 = P (both selected points are inliers)

1− w2 = P (at least one of these two points is outlier)
(104)

Let k indicate the number of RANSAC iterations so far, then

(1− w2)k = P (RANSAC never selected two points both inliers) (105)

Let p be the probability of success:

1− p = (1− w2)k

⇒ k =
log(1− p)

log(1− w2)
.

(106)

4. What is the trend of RANSAC iterations k vs the fraction of outliers ε = 1− w vs
the minimum number of points to estimate the model?
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Answer.

• As observed, k is exponential in the number of points s necessary to estimate
the model. We can see that k increases exponentially with the fraction of
outliers ε.

• The 8-point algorithm is extremely simple and was very successful; however it
requires more than 1177 iterations.

• The 5-point algorithm only requires 145 iterations, but can return up to 10
solutions of E.

• The 2-point algorithm (e.g. line fitting) requires 16 iterations. Motion con-
straints need to be set to apply this algorithms for robots

• The 1-point algorithm requires only 1 iteration and is only used to find the
inliers. the motion is then estimated from them in 6DOF and only 1 DOF

5. How do we apply RANSAC to the 8-point algorithm vs DLT?

Answer. DLT 6 points , don’t need to since it’s monocular and only one image.
No outlier rejection for matching required, since there is no matching.
RANSAC 8 points. Needs outlier rejection, since stereo view → two images. The
model with eight point algorithm is the matrix E.

6. How can we reduce the number of RANSAC iterations for the SFM problem (1- and
2-point RANSAC)?

Answer. By choosing lower p or another w, we can reduce the iterations.
Planar Motion (1-,2-point RANSAC) Planar motion is described by three
parameters ϑ, ϕ, ρ

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , T =

ρ cos(ϕ)
ρ sin(ϕ)

0

 (107)

Let’s compute the Epipolar Geometry

Figure 23: Planar motion.
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E = [T ]x ·R

=

 0 0 ρ sin(ϕ)
0 0 −ρ cos(ϕ)

−ρ sin(ϕ) ρ cos(ϕ) 0

 ·
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1


=

 0 0 ρ sin(ϕ)
0 0 −ρ cos(ϕ)

−ρ sin(ϕ− θ) ρ cos(ϕ− θ) 0

 .

(108)

E has 2 DoF (θ, ϕ), because ρ is the scale factor. Thus, 2 correspondences are
sufficient to estimate them.
But: can we use less than 2 point correspondences? Yes, if we exploid wheeled
vehicles with non-holonomic constraints. Wheeled vehicles like cars, follow locally-
planar circular motion about the instantaneous Center of Rotation (ICR). Since
ϕ = θ/2, meaning that we have only 1 DoF. Only 1 point correspondence is needed.
This is the smallest parametrization possible and results in the most
efficient algorithm for removing outliers (Scaramuzza). This updates the
problem to be

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , T =

ρ cos( θ
2
)

ρ sin( θ
2
)

0

 (109)

and

E = [T ]x ·R

=

 0 0 ρ sin( θ
2
)

0 0 −ρ cos( θ
2
)

ρ sin( θ
2
) −ρ cos( θ

2
) 0

 .
(110)

With the Epipolar Geometry constraint leads to

θ = −2 tan−1

(
v2 − v1

u2 + u1

)
. (111)

Only one iteration: compute θ for every point correspondence. Up to 1000 Hz,
1-point RANSAC in only used to find the inliers. Motion is then estimated from
them in 6DOF.

Figure 24: Non-holonomic.

45



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

7. In practice, can you fully rely on the formula that predicts the optimal number of
iterations? (hint: especially when the inliers themselves are noisy, RANSAC exer-
cise).

Answer.

Bundle Adjustment

1. Definition of Bundle Adjustment (mathematical expression and illustration).

Answer. Nonlinear, simultaneous refinement of structure and motion (i.e.
R, T, P i). It is used after linear estimation of R and T . This, computes R, T, P i by
minimizing the Sum of Squared Reprojection Errors:

(R, T, P i) = argminR,T,P i

N∑
i=1

||pi1 − π1(P i, C1)||2 + ||pi2 − π2(P i, C2)||, (112)

where C1, C2 are the pose of the camera in the world frame. This can be minimized
using Lavenberg-Marquardt (more robust than Gauss-Newton to local minima). It
is better to initialize it close to the minimum. Same for multiple views!

Figure 25: Bundle Adjustment n views.

2. Hierarchical SFM and sequential SFM for monocular VO.

Answer. Hierarchical SFM

(a) Extract and match features between nearby frames.

(b) Identify clusters consisting of 3 nearby frames:

(c) Compute SFM for the 3 frames:

• Compute SFM between 1 and 2 and build pointcloud.

• Merge 3rd view running 3-point RANSAC between point cloud and 3rd
view.

(d) Merge clusters pairwise and refine (BA) both structure and motion.
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Example is building Rome in one day.
Sequential SFM
With n views. Also called Visual Odometry (VO).

(a) Bootstrapping

• Initialize structure and motion from 2 views: e.g. 8-point algorithm +
RANSAC.

• Refine structure and motion (BA)

• How far should the frames be? If too small baseline, large depth un-
certainty. If too large baseline, small depth uncertainty. Remember the
picture with ellipses which describe the depth uncertainty. If baseline in-
creases, the ellipses decrease in size.

(b) Localization

• Compute camera pose from known 3D-to-2D feature correspondence.

– Extract correspondences by solving for R and t (K is known).

λ ·

uv
1

 = K · [R|T ] ·


Xw

Yw
Zw
1

 (113)

• What is the minimal number of required point correspondences

– 6 for linear solution (DLT algorithm).

– 3 for a non linear solution (P3P algorithm).

– 3 point RANSAC.

(c) Extend Structure

• Extract and triangulate new features from keyframes

By denoting the relative motion between adjacent keyframes as

Tk =

(
Rk,k−1 tk,k1

0 1

)
, (114)

we can concatenate transformations to find the full trajectory of the camera as

Ck = Tk,k−1 · Ck−1 (115)

A non-linear refinement (BA) over the last m poses (+visible structure) can be
performed to get a more accurate estimate of the local trajectory.

3. What are keyframes? Why do we need them and how can we select them?

Answer. A data set may have a lot of images, but we don’t need to run SFM algo-
rithms on all images (computationally too expensive) to reconstruct a trajectory. A
keyframe is an image for which the pose is estimated. Landmarks are triangulated
using 2 keyframes as input.
When frames are taken at nearby positions compared to the scene distance, 3D
points will exibit large uncertainty ⇒ One way to avoid this consists of skipping
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frames until average uncertainty of the 3D points decreases below a certain thresh-
old. The selected frames are called keyframes. In general

keyframe distance

average-depth
> threshold (10− 20%). (116)

4. Definition of loop closure detection (why do we need loops?).

Answer.

• Relocalization problem: during VO, tracking can be lost (due to occlusions,
low tecture, quick motion, illumination change).

• Solution is to re-localize camera pose and continue.

• Loop closing problem: when go back where you already have been:

– Loop detection: to avoid map duplication (e.g. same crossing rotated)

– Loop correction: to compensate the accumulated drift!

• In both cases places recognition is needed (lecture 12)

5. List the most popular open source VO and VSLAM algorithms.

Answer.

• PTAM: Parallel Tracking and Mapping for Small AR Workspaces

• ORB-SLAM: Feature based, FAST corner + Oriented Rotated Brief descriptor
includes loop closing, relocalization, final optimization, real time

• LSD-SLAM: Direct (photometric error) + Semi-Dense formulation, includes
loop closing, relocalization, final optimization, real time

• DSO: Direct (photometric error) + Sparse formulation, real time, BA sliding
window

• SVO: Direct (minimizes photometric error), Feature-based (minimizes repro-
jection error), mapping, real time fast

6. Differences between feature-based and direct methods.

Answer. Feature-based Methods

(a) Extract and match features (+RANSAC)

(b) Minimize Reprojection Error:

Tk,k−1 = argminT
∑
i

||u′i − π(pi)||2Σ (117)

Good: Large frame-to-frame motions, accuracy and efficient optimization of
SFM (BA).
Bad: Slow due to costly feature extraction and matching, matching outliers
(RANSAC).

Direct Methods (all pixels)

48



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

(a) Minimize photometric error:

Tk,k−1 = argminT
∑
i

||Ik(u′i)− Ik−1(ui)||2σ, (118)

where
u′i = π(T · (π−1(ui) · d)) (119)

Good: All information in the image can be exploited. Increasing camera
frame-rate reduces computational cost per frame.
Bad: Limited frame to frame motion. Joint optimization of dense structures
and motion too expensive.

Feature based methods process the image to find corners to compare. This is an is-
sue, as it doesn’t work well in human environments, as many any straight or curved
edges would be discarded, meaning that the information is less complete. Also, a
picture which has most of its features concentrated in a small area is of less interest
to the algorithm as a picture with many details all over, as the features cannot
overlap. Another issue with feature based methods is that storing the processed
features can quickly become very costly. However, since this method eliminates all
data that cannot be used (non features points), it is faster than direct methods. It
is possible to reconstruct dense maps from feature based methods by estimating the
camera positions to find what was at the given location.

Direct Methods however, compare the entire images to each other to reference them
to each other, finding which parts go together. It can create semi dense 3D maps
in real time on a smartphone using semi dense filtering algorithms. This means it
provides more information about he environment, making it more interesting to use
in robotics or Augmented Reality, as well as giving a more meaningful representa-
tion to the human eye. Some disadvantages of Direct methods are that they cannot
handle outliers very well, as they will always try to process them an implement them
into the final map, and that they are slower than feature based variants.

Figure 26: Comparison direct vs feature based.
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Lecture 10 Multi view stereo

1. Working principle (aggregated photometric error).

Answer. For the 3D reconstruction from multiple views, we assume that camera
are calibrated

• intrinsically (K is known for each camera), and

• extrinsically (T and R between cameras are known, for instance, from SFM).

For the multi-view stereo, we have as:
Input: calibrated images from several viewpoints.
From a dense region of pixels (hence not only from corners) estimate the structure.
The workflow is:

(a) Local methods: estimate depth for every pixel independently. (Not all the
pixels can be matched reliably, due to viewpoint changes, occlusions.)
We take advantage of many small baseline views, where high quality matching
is possible.

(b) Global methods: refine the depth surface as a whole by enforcing smoothness
constraint.
We use the photometric error (SSD): the aggregated photometric error plot
is derived for every combination of the reference image and any further image.
IDEA: optimal depth minizes the photometric error in all images as a function
of the depth in the first image.
The SSD between corresponding patches of intensity values (min patch size: 1×
1 pixels) = photometric error→ dense correspondences→ dense reconstruction

Output: 3D object dense reconstruction.
Recall: The two camera centers and the image point p determine the epipolar plane,
which intersects each camera image plane in the epipolar lines. Since we use the
epipolar constraint, corresponding points only need to be searched along epipolar
lines.

2. What are the differences in the behavior of the aggregated photometric error for
corners, flat regions, and edges?

Answer. Plot: x-axis inverse depth d, y-axis aggregated photometric error C(a,d),
a= image point

• The aggregated photometric error for flat regions and edges parallel to the
epipolar line show flat valleys (noise!).

• For distinctive features like corner, the aggregated photometric error has one
clear minimum.

• Repetitive texture shows multiple minima.

3. What is the Disparity Space Image (DSI) and how is it built in practice?
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Answer. For a given image point (u, v) and for discrete depth hypotheses d, the
aggregate photometric error C(u, v, d) with respect to the reference image Ir can be
stored in a volumetric 3D grid called the Disparity Space Image (DSI), where each
voxel (group of u, v, d) has value

C(u, v, d) =
∑
k

ρ
(
Ĩk(u

′, v′, d)− Ir(u, v)
)

︸ ︷︷ ︸
photometricerror(SSD)

, (120)

where Ĩk(u
′, v′, d) is the patch of intensity values in the k-th image centered on the

pixel (u′, v′) corresponding to the patch Ir(u, v) in the reference image Ir an depth
hypothesis d.

4. How do we extract the depth from the DSI?

Answer. The depth is the solution to a function d(u, v) in the DSI that satisfies:

Minimum aggregated photometric error (i.e. argmindC)

AND

Piecewise smooth (global methods)

(121)

Interpolating while not overfitting!

5. How do we enforce smoothness (regularization) and how do we incorporate depth
discontinuities (mathematical expressions)?

Answer. Global Methods: We smooth the image in terms of energy minimiza-
tion. The objective is to find a surface d(u, v) that minimizes a global energy

E(d) = Ed(d)︸ ︷︷ ︸
data term

+ λ · Es(d)︸ ︷︷ ︸
regularization term

, (122)

where
Ed(d) =

∑
(u,v)

C(u, v, d(u, v)) (123)

and

Es(d) =
∑
(u,v)

ρd(d(u, v)− d(u+ 1, v)) + ρd(d(u, v)− d(u, v + 1)). (124)

ρd is a norm (e.g. the L1,2 or Huber norm).

• The regularization term Es(d)

– Smooths non smooth surfaces (result of noisy measurements) as well as
discontinuities.

– Fills the holes.

• Popular assumption: discontinuities in intensity coincide with discontinuities
in depth.

51



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

• Control smoothness penalties according to image gradient (discrete)

ρd(d(u, v)− d(u+ 1, v)) · ρI(||I(u, v)− I(u+ 1, v)||) (125)

• ρI is some monotically decreasing function of intensity differences: lower
smoothness cost for high intensity gradients (if there are high intensity
gradients, you don’t want to smooth them as they are a crucial information in
your image.

6. What happens if we increase lambda (the regularization term)? What if lambda is
0? And if lambda is too big?

Answer. λ controls the tradeoff data (regularization)

• Higher λ = higher smoothing!

• λ = 0→ no smoothing

• λ too big → oversmoothing. can’t recognize different depths anymore

7. What is the optimal baseline for multi-view stereo?

Answer.

• Too small: large depth error.

• Too large: difficult search problem.

Solution:

• Obtain depth map from small baselines

• When baseline becomes too large create new reference frame (keyframe) and
start new depth computation

A possible approach is depth map fusion (different depth maps with different
perspectives gives a complete image).

8. What are the advantages of GPUs?

Answer. General Purpose Computing on Graphics Processing Unit. It can perform
more demanding calculations than CPU because

• GPUs run thousand of lightweight threads in parallel

– more transistors for data processing.

– Typically on consumer hardware: 1024 threads per multiprocessor, 30 mul-
tiprocessors: 30000 threads. CPU with 4 cores which supports 32 threads.

• well suited for data-parallelism

– the same instructions executed on multiple data in parallel

– high arithmetic intensity: arithmetic operations/ memory operations

Those characteristics lead to

• Fast pixel processing (ray tracing, draw textures, shaded triangles,..)
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• Fast matrix/vector operations (transform vertices)

• Programmable (shading, bump mapping)

• Floating-point support (accurate computations)

• Deep learning.
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Lecture 11 Tracking

1. Illustrate tracking with block matching.

Answer. Block matching is an approach for point tracking. given two images,
estimate the motion of a pixel point from image 1 to image 2

• Search for the corresponding patch in a neighborhood around the point.

• Use SSD, SAD, NCC to search for corresponding patches in a local neighbor-
hood of the point. The search region usially is a D ×D squared patches. We
have to perform D ×D comparisons, computationally demanding.

Figure 27: Block matching.

2. Differential Methods

(a) Describe the underlying assumptions, derive the mathematical expression, and
meaning of the M matrix.

Answer.

• Look at the local brightness changes at the same location. NO patch
shift is performed. (centered in the same point!)

Spatial Coherency We assume that all the pixels in the patch undergo the
same motion (same u and v). Also, assume that the time interval between the
two images I0 and I1 is small. We want to find the motion vector (u, v) that
minimizes the Sum of Squared Differences (SSD). As we did for Harris, we look
at the first order Taylor approximation of the sum:

SSD =
∑

(I0(x, y)− I1(x+ u, y + v))2

≈
∑

(I0(x, y)− I1(x, y)− Ix · u− Iy · v)2

=
∑

(∆I − Ix · u− Iy · v)2

= E,

(126)
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which is a simple quadratic function in two variables (u, v). To minimize the
E, we differentiate with respect to (u, v) and equate to 0.

∂E

∂u
= 0⇒ −2Ix

∑
(∆I − Ix · u− Iy · v) = 0

∂E

∂v
= 0⇒ −2Iy

∑
(∆I − Ix · u− Iy · v) = 0

(127)

Linear system of two equations in two unknowns. We can write this in matrix
form(∑

IxIx
∑
IxIy∑

IxIy
∑
IyIy

)
·
(
u
v

)
=

(∑
Ix ·∆I∑
Iy ·∆I

)
(
u
v

)
=

−1(∑
IxIx

∑
IxIy∑

IxIy
∑
IyIy

)
︸ ︷︷ ︸

M

·
(∑

Ix ·∆I∑
Iy ·∆I

) (128)

These are not matrix products, but pixel-wise products!

(b) When Is this matrix invertible and when not?

Answer. For M to be invertible, its determinant should be non 0. From the
decomposition

M = R−1 ·
(
λ1 0
0 λ2

)
·R, (129)

we know that det(M) is non zero when its eigenvalues are large (i.e. not a flat
region and not an edge). In practice, it should be a corner or in general contain
texture.

(c) What is the aperture problem and how can we overcome it?

Answer. If we look at local brightness changes through a small aperture,
we cannot always determine the motion direction, because infinite motion
directions (solutions) may exist (along a edge). The solution is to increase
the aperture size.

(d) What is optical flow?

Answer. Optical flow is an application of differential method and is the
pattern of apparent motion of objects in a visual scene, caused by the relative
motion between the observer (eye or camera) and the scene. It tracks the
motion of every pixel between two consecutive frames. For each pixel, we
compute

• The vector direction and,

• The vector length (amount of movement).

An issue could be the choice of the right patch size. It can also be applied to
corner tracking.

3. Pros and Cons of block-based vs differential methods for tracking

Answer. Block-based Methods: search for the corresponding patch in a neigh-
borhood of the point to be tracked. The search region is usually a square of n× n
pixels.
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• +: robust to large motions

• −: Can be computationally expensive (n × n comparisons for a single point
track)

Differential Methods:

• +: Much more efficient than block-based methods. Thus, can be used to track
the motion of every pixel in the image. It avoids searching in the neighborhood
of the point by analyzing the local intensity changes of an image patch at
a specific location (no search is performed).

• −: Works only for small motions (high frame rate). For larger motion, multi-
scale implementations are used, but are then expensive.

4. Lucas-Kanade algorithm

(a) Working principle of KLT and derivation of the underlying mathematical ex-
pression (only first two slides titled derivation of the Lucas-Kanade algorithm,
slide pp. 55-56)

Answer. Template Warping Given the template image T (x), take all the
pixels from the template image and warp them using the function W (x, p)
parameterized in terms of parameters p. The goal of template-based tracking
is to find the set of warp parameters p such that

I(W (x, p)) = T (x). (130)

Assumptions are:

• No errors in the template image boundaries: only the appearance of the
object to be tracket appears in the template image.

• No occlusion: the entire template is visible in input image.

• Brightness consistency assumption: the intensity of the object appearance
is always the same across different views.

The algorithm:

i. Warp I(x) with W (x, p).

ii. Compute the error.

iii. Compute warped gradients, ∇I evaluated at W (x, p).

iv. Evaluate the Jacobian of the warping ∂W
∂p

.

v. Compute the inverse Hessian H−1.

vi. Multiply steepest descend with error.

vii. Comptue ∆p.

viii. Update parameters p← p+ ∆p.

ix. Repeat until ∆p < ε.

The algorithm follows a predict-correct cycle. A prediction I(W (x, p)) of the
warped image is computed from an initial estimate.
It uses the Gauss-Newton method for minimization, i.e.

• Applies a first order approximation of the warp,

56



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

• Attempts to minimize the SSD iteratively.

This is solved by determining p that minimizes the Sum of Squared Differences

E = SSD =
∑
x∈T

[I(W (x, p))− T (x)]2 . (131)

Then, we want to find the increment ∆p that minimizes∑
x∈T

[I(W (x, p+ ∆p))− T (x)]2 . (132)

The first order Taylor approximation of the term in brackets reads

I(W (x, p+ ∆p)) ≈ I(W (x, p)) + ∇I︸︷︷︸
image gradient

∂W

∂p︸︷︷︸
Jabobianof the warp

∆p. (133)

The image gradient ∇l = [Ix, Iy] is evaluated at W(x,p). By replacing that in
the equation we get

E =
∑
x∈T

[
I(W (x, p)) +∇I ∂W

∂p
∆p− T (x)

]2

. (134)

In order to minimize it, we differentiate and equate to 0, i.e.

∂E

∂∆p
= 0. (135)

(b) What is the Hessian matrix and for which warping function does it coincide to
that used for point tracking?

Answer.

∆p = H−1
∑
x∈T

(
∇I δW

δp

)T
(T (x)− I(W (x, p))), (136)

where

H =
∑
x∈T

(
∇I ∂W

∂p

)T (
∇I ∂W

∂p

)
(137)

is the second moment matrix of the warped image (Hessian).
Translation ?

∇Wp =

[
1 0
0 1

]
⇒ ∇I∇Wp =

[
Ix 0
0 Iy

]
⇒ H =

[
IxIx 0

0 IyIy

]
(138)

(c) Lucas-Kanade failure cases and how to overcome them

Answer. • If the initial estimate is too far, the linear approximation does
not longer hold. Or aliasing because many pixel have the same intensity.
Solution are pyramidal implementations / coarse-to-fine implementa-
tion
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Figure 28: KLT algorithm

• if Illumination changes, object deformations and Occlusions are in the
initial image, the tracking will drift. A solution can be to update the
template with newest image.

• In order to deal with wrong prediction, it can be implemented in a Particle-
Filter fashion.

(d) How do we get the initial guess?

Answer. We set the initial guess to zero p = 0 , because there is not initial
guess available at the deepest pyramidal level.

(e) Illustration of coarse-to-fine Lucas-Kanade implementation.

Answer. Due to the small motion assumption, regular optical flow methods
work bad if the object we are tracking moves a long distance. Building image
pyramids for each image and doing optical flow on each layer of the pyramid
(to get rid of small motion constraints).For building the pyramid, first reduce
the image resolution using Gaussian blur and then scale the image down.

Figure 29: Pyramidal implementation.

58



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

(f) llustrate alternative tracking using point features.

Answer.

i. Keypoint detection and matching. Invariant to scale, rotation or perspec-
tive.

ii. Geometric verification (RANSAC)

Issues here are:

• How to segment the object to track from background?

• How to initialize the warping?

• How to handle occlusions?

• How to handle illumination changes andn on modeled effects?

5. List one or more possible ways of discarding wrong feature tracks in practice.

Answer. ???

• Warping function W (x, p)

• p set of parameters p = (a1, a2, ...an)

• Translation: 2 DOF

W (x, p) =

(
x+ a1

y + a2

)
=

(
1 0 a1

0 1 a2

)
·

xy
1

 . (139)

• Euclidean: 3 DOF

W (x, p) =

(
x cos(α)− y sin(α) + a1

x sin(α) + y cos(α) + a2

)
=

(
cos(α) sin(α) a1

sin(α) cos(α) a2

)
·

xy
1

 . (140)
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• Affine: 6 DOF

W (x, p) =

(
a1x+ a3y + a5

a2x+ a4y + a6

)
=

(
a1 a3 a5

a2 a4 a6

)
·

xy
1

 . (141)

• Projective (homography): 8 DOF

x′ =
a1x+ a2y + a3

a7x+ a8y + 1
, y′ =

a4x+ a5y + a6

a7x+ a8y + 1
. (142)

W (x̃, p) =

a1 a2 a3

a4 a5 a6

a7 a8 1

xy
1

 (143)

Recalling that the Jacobian of a function

F (x1, x2, . . . , xn) =

f1(x1, x2, . . . , xn)
...

fm(x1, x2, . . . xn)

 (144)

is

J(F ) = ∇F =


∂f1

∂x1
. . . ∂f1

∂xn
...

∂fn
∂x1

. . . ∂fn
∂xn

 (145)

Displacement-model with Jacobians ∇Wp
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Lecture 12 Place Recognition

Bag of Words

1. Inverted file index

Answer. For text documents, an index is important. We want to find every image
in which a feature occurs. How many SIFT or BRISK features exist ?

• SIFT: infinite.

• BRISK-128: 2128 = 2.4 · 1038.

For this reason, we need to create visual words, then put them into a vocabulary.
Basically, we collect images and we extract features. A visual word is the centroid
of a cluster. We then cluster the descriptors with the different words.
An inverted file index lists all visual words in the vocabulary (extracted at training
time). Each word points to a list of images from the all image Data Base, in which
which that word appears. The DB grows as the robot navigates and collects new
images.
Voting Array: has as many cells as the images in the DB. Each word in the query
image votes for an image.

2. What is a visual word?

Answer. A visual word is the centroid of a cluster and is a part of a visual vo-
cabulary.
Image collection→ extract features→ order the features based on their descriptors
in the descriptor space → cluster the descriptors

3. Why do we need hierarchical clustering?

Answer. We need hierarchical clustering to build the inverted file index and
enable the recognition.

4. How does K-means clustering work?

Answer. This is an algorithm to partition n observations into k clusters in which
each observation x belongs to the cluster Si with centroid mi. It minimizes the sum
of squared Euclidean distances between points x and their nearest cluster centers
mi

D(X,M) =
k∑
i=1

∑
x∈Si

(x−mi)
2. (146)

The algorithm reads

(a) Randomly initialize k cluster centers

(b) Iterate until convergence:

• Assign each data point xi to the nearest center mi.

• Recompute each cluster center as the mean of all points assigned to it.

5. Explain and illustrate image retrieval with Bag of Words.
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Answer. Bag of Words can be applied to image classification, by treating image
features as words. In document classification, a bag of words is a sparse vector
of occurrence counts of words; that is, a sparse histogram over the vocabulary.
In computer vision, a bag of visual words is a vector of occurrence counts of a
vocabulary of local image features.
This algorithm simply computes the distribu-tion (histogram) of visual words found
in the query image and compares this distribution to those found in the training
images (vocabulary).

Figure 30: Bag-of-Words Retrieval.

6. Discussion on place recognition: what are the open challenges and what solutions
have been proposed?

Answer. Visual Vocabulary discards the spatial relationships between features: two
images with the same features shuffled around will return a 100% match when using
only appearance information. This can be overcome with geometric verification:
test the h most similar images to the query image for geometric consistency (5,8
point RANSAC) and retain the image with the smallest reprojection error and
largest number of inliers. More words is better!
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Lecture 13 Visual Inertial Fusion

Inertial Measurement Unit: angular velocity, linear acceleration

1. (a) Why an IMU for VO?

Answer.

• Monocular vision is scale ambiguous.

• Pure vision is not robust enough (Tesla accident):

– Low texture.

– High dynamic range.

– High speed motion.

Why not just IMU?
Pure IMU integration will lead to large drift (especially cheap IMUs). Integra-
tion of angular velocity to get orientation: error proportional to t. Double
integration to get position: if there is a bias in acceleration, the error of posi-
tion is proportional to t2. The actually position error also depends on the
error of orientation.

(b) How does a MEMS IMU work?

Answer.

• Mechanical: spring/damper system.

• Optical: Phase shift projected laser beams is proportional to angular ve-
locity.

• MEMS (accelerometer): a spring-like structure connects the device to a
seismic mass vibrating in a capacitive divider. A capacitive divider con-
verts the displacement of the seismic mass into an electric signal. Damping
is created by the gas sealed in the device.

• MEMS (gyroscopes): measure the Coriolis forces acting on MEMS vibrat-
ing structures. Their working principle is similar to the haltere of a fly.

(c) Whats the drift of an industrial IMU?

Answer. Accelerometer Bias Error: 3 mg
Drift: 1s = 15 mm , 10s = 1.5m, 60s = 53 m

• Integration of angular velocity to get orientation: error proportional to t
Double integration of acceleration to get position: if there is a bias in

• acceleration, the error of position is proportional to t2

• Worse, the actually position error also depends on the error of orientation.

2. What is the IMU measurement model (formula)?

Answer.

ω̃BWB(t) = ωBWB(t) + bg(t) + ng(t)

ãBWB(t) = RBW (t) ·
(
aWWB(t)− gW

)
+ ba(t) + na(t)

(147)
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where g stands for Gyroscope and a for accelerometer. The noise is additive Gaus-
sian white noise. The bias has own dynamics

ḃ(t) = σb · w(t), (148)

i.e. the derivative of the bias is white Gaussian noise (random walk). In discrete
time, one writes

b[k] = b[k − 1] + σbd · w[k], w[k] ∼ N (0, 1), σbd = σb ·
√
t (149)

3. What causes the bias in an IMU?

Answer. Bias can be estimated.

• Can change due to temperature change, mechanical pressure,..

• Can change everytime the IMU is started.

4. How do we model the bias?

Answer. Integration leads to

pWt2 = PWt1 + (t2 − t1)vWt1 +

∫ ∫ t2

t1

RWt(t) (ã(t)− ba(t) + gw) dt2, (150)

which depends on initial position and velocity. The rotation R(t) can be computed
with a gyroscope.

5. How do we integrate the acceleration to get the position (formula)?

Answer. ???

6. Definition of Loosely coupled vs tightly coupled visual inertial fusion

Answer. Loosely Coupled Approach: Treats VO and IMU as two separate (not
coupled black boxes). Each block estimates pose and velocity from visual and
inertial data (pose and velocity up to a scale and inertial data in absolute scale).
Tightly Coupled Approach: Makes use of the raw sensors’ measurements: 2D

Figure 31: Loosely Coupled Approach.

features, IMU readings, more accurate, more implementation effort. System states
are:
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Figure 32: Tightly Coupled Approach.

• Tightly Coupled: X =
(
pW (t); qWB(t); vW (t); ba(t); bg(t);Lw,1; . . . ;Lw,K

)
,

with L Landmarks.

• Loosely Coupled X =
(
pW (t); qWB(t); vW (t); ba(t); bg(t)

)
7. How can we use non-linear optimization-based approaches to solve for visual inertial

fusion (mathematical expression and graphical illustration of the pose graph)?

Answer. Maximum a Posterior Estimation (MAP): Fusion solved as a non-
linear optimization problem. Increased accuracy over filtering methods. We have

xk = f(xk−1), zk = h(xik , lij), (151)

where X are the robot states, L the 3D points and Z the features and IMU mea-
surements. It holds

{X∗, L∗} = argmaxX,LP (X,L|Z)

= argminX,L{
N∑
k=1

||f(xk−1)− xk||2Λk︸ ︷︷ ︸
IMU residuals

+
M∑
i=1

||h(xik)− zi||2Σi︸ ︷︷ ︸
Reprojection residuals

} (152)

An open problem is consistency:

• Filters: Linearization around different values of the same variable may lead to
error.

• Smoothing methods: may get stuck in local minima.
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Figure 33: Max a Posterior Estimation (MAP).

Lecture 14 Event-based Vision

1. Whats a DVS and how does it work?

Answer. Event cameras enable low-latency sensory motor control < 1ms. A
DVS outputs asynchronous events at microsecond resolution. An event is gener-
ated each time a single pixel detects an intensity changes:

event:〈t, < x, y >, sign

(
dI(x, y)

dt

)
〉 (153)

All pixels are independent from another. Implements level-crossing sampling.
Reacts to logarithmic brightness changes. Each pixel is independent of all the
other pixels. Events are generated everytime a single pixel sees a change of the
logarithm of the brightness that is equal to C, i.e.

| log(I)| = | log(I(t+ ∆t)− log(I(t))| = C, (154)

where C ∈ [0.15, 0.20] is called contrast sensitivity and can be tuned by the user.
Since brightness can be either positive or negative, we have ON event if = C and
OFF event if = −C. Traditional sampling is performed with the discriminant

Figure 34: DVS circuit

(time) on x−axis. Level-crossing sampling works with the change in intensity, in
the y−axis.
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Figure 35: DVS.

2. What are its pros and cons vs standard cameras and vs high speed cameras?

Answer. Advantages:

• Low latency (1 micro second)

• High dynamic range (140 dB instead of 60 dB)

• Low power: 10mW instead of 1W

Disadvantages:

• Paradigm shift: requires totally new vision algorithms

– Asynchronus pixels,

– No intensity information (only binary intensity changes).

3. Can we apply standard camera calibration techniques?

Answer. The standard pinhole camera model is still valid (same optics). Standard
passive calibration cannot be used: we would need to move the camera. Blinking
patterns (computer screen, LEDs).

4. How can we compute optical flow with a DVS?

Answer. White pixels become black, i.e. the brightness decrease, i.e. negative
events (black color). Events are represented by dots. At what speed is the edge
moving? v = ∆x

∆t
. Two different approaches

• Event-by-event processing (i.e. estimate the state event by event): Pros:
low latency, Cons: with high speed motion, there are dozens of millions of
events per seconds (GPU)
Let’s start with an approximation:

∆ log(I) =
∂ log(I)

δt
∆t

=
1

I

δI

δt
∆t

=
∂I

I
.

(155)

67



G.Zardini, A.Dai Vision Algorithms for Mobile Robotics HS 2017

• Event-packet processing (i.e. process the last N events): Pros: N can be
tuned to allow real-time performance on a CPU. Cons: no longer microsecond
resolution (when is this really necessary=)

5. Intuitive explanation of why we can reconstruct the intensity.

Answer. The intensity signal at the event time can be reconstructed by integration
of ±C. Given the events and the camera motion (rotation), recover the absolute
brightness. Explanation: An event camera naturally responds to edges, hence,
if we know the motion, we can relate the events to world coordinates to get an
edge/gradient map. Then, just integrate the gradient map to get absolute intensity.

(a) Recover the gradient map of the scene. Let L = log(I). Then

∆L(t) = L(t)− L(t−∆t) = C. (156)

In terms of the brightness map M(x, y):

M(pm(t))−M(pm(t−∆t)) ≈ g · v ·∆t, (157)

with g = ∇M(pm(t)).

(b) Integrate the gradient to obtain brightness. Poisson reconstruction: integrate
the gradient map g to get absolute brightness M .

Figure 36: DVS vs High Speed Cameras.

6. What is the generative model of a DVS?

Answer. ???
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7. What is a DAVIS sensor?

Answer. Combines an event sensor (DVS) with a standard camera in the same
pixel array. Output are frames (at 30 Hz) and events (asynchronous). One can
them perform SLAM with an IMU, which increases robustness and accuracy.
Open problems for DVS are: noise modeling, asynchronous feature and object detec-
tion and tracking, sensor fusion, asynchronous learning and recognition, estimation
and control, low power computation.

8. Can you write the equation of the event generation model and its proof?

Answer. To simplify the notation, let’s assume that I(x, y, t) = log(I(x, y, t)).
Consider a given pixel p(x, y) moving with apparent motion ~u = (u, v) (i.e. induced
by a moving 3D patch). It can be shown, that an event is generated if the scalar
product between the gradient and the appearent motion vector u is equal to C.

−∇I · u = C (158)

Proof. The proof comes from the brightness constancy assumption, which says that
the intensity value of p, before and after the motion, must remained unchanged

I(x, y, t) = I(x+ u, y + v, t+ ∆t) (159)

By replacing the right-hand term by its first order approximation at t+ ∆t, we get

I(x, y, t) = I(x, y, t+ ∆t) +
∂I

∂x
u+

∂I

∂y
v

I(x, y, t+ ∆t)− I(x, y, t) = −∂I
∂x
u− ∂I

∂y
v

⇒ ∆I = C = −∇ · u.

(160)

This equation described the linearized event generation equation for an event gen-
erated by a gradient ∇I that moved by a motion vector u (optical flow) during a
time interval ∆t. 1 Equation, 2 Unknowns, solution is to add events.
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Lecture 15 Visual (inertial) Odometry

1. List one or more possible ways to decide when to triangulate new landmarks based
on feature tracks.

Answer. Triangulate new landmarks when

• Angle between landmark and camera is sufficient.

• Keypoints were tracked over certain number of frames.

2. What are keyframes in Visual Odometry?

Answer.

• Frames, where new landmarks are triangulated.

3. Why are they needed? Are they strictly necessary?

Answer.

• For BA, you can optimize only on desired frames.

• Reduces computational complexity without reducing accuracy.

4. How to decide whether a given frame should be a keyframe?

Answer. • Possible to use every frame as keyframe in a continuous manner
rather than discrete, by keeping track of first observation of landmarks (and
pose) and triangulate, if angle large enough.

5. Do you know any popular Visual (Inertial) Odometry algorithm? (one or more).
Can you explain briefly how they work?

Answer. Kalman filtering Visual odometry (see MSCKF for planetary landing I
quoted in the final report). It fuses in a probabilitistc framework both observations
from the camera with predictions from an IMU. It can be coupled with GPS (for
UAVs for example).
About MSCKF (Multi-state constraint kalman filter): its particularity is that ob-
servations from the camera do not need to triangulate keypoints, so they don’t need
to be added to the state, reducing the memory/computation requirements. Also,
only a sliding window of observations (2D pts) is kept for each keypoint, reducing
the complexity.

6. Suppose you have implemented a monocular Visual Odometry pipeline. How would
change it to work as well with a stereo camera?

Answer.

(a) You fuse it in a Kalman filter and don’t change much, by taking observations
of both cameras as observations with same processing and weights (only take
care of offset).

(b) Remove triangulation from normal pipeline and triangulate new keypoints each
time using the 2 cameras, but would be pretty bad with its accuracy.
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(c) Triangulate each time and refine the poses of the 3d pts until the interrsection of
bundles (such as inSVO I think, and for event cameras algorithms) is precise
enough (by computing/refining the uncertainty each time) until the 3d pts
positions are very precise, in which case they’re added to sparse map and used
in odometry (P3P).
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Application Questions

1. Summarize the building blocks of a visual odometry (VO) or visual SLAM (VSLAM)
algorithm.

Answer. In general the are three different VO algorithms:

• 2D-2D: Compute Essential/Fundamental matrix between images and extract
extrinsics, then concatenate relative movements.

• 3D-3D: Determine the aligning transform of two 3D landmark sets, then con-
catenate.

• 3D-2D: Use PnP to estimate absolute pose from known 3D landmarks and
their most recent observation. No concatenation necessary!

The detailed architecture of a 3D-2D VO is the following:

(a) Bootstrapping:

i. Initialize the algorithm by detecting and matching features in two frames.
Use correspondences to triangulate a first set of landmarks.

(b) Continuous Operation (Feature-based):

i. Track or match features from previous image to get the correspondence of
current 2D features to 3D landmarks.

ii. Motion estimation by using RANSAC and Perspective from 3 Points (P3P).
Use the 2D-3D correspondances.

iii. Add additional candidate keypoints and landmarks over the next im-
ages. Triangulate new candidate landmarks from original observation and
keyframe observation. To derermine if a landmark can be triangulated
with sufficient accuracy, determine base line/bearing angle between the
two observations. If this measure reaches some threshold, add candidate
landmark to the landmarks used for motion estimation (PnP). Detect new
features to track over the next images.

(c) (VSLAM) only:

i. Loop detection: use place recognition by BoW or other algorithms to
update landmarks and transformations to align with loop closure.

ii. Local Graph optimization: Refine graph by minimizing the reprojection
error of landmarks over all frames in which they were observed. The ar-
gument over which is minimized are the camera poses.

2. Augmented reality (AR) is a view of a physical scene augmented by computer-
generated sensory inputs, such as data or graphics. Suppose you want to design
an augmented reality system that super-imposes text labels to the image of real phys-
ical objects. Summarize the building blocks of an AR algorithm.

Answer.

(a) Use SfM (Multiple View Geometry) to create 3D scene reconstruction.

i. Option 1: Use features such as Harris, FAST or others and match them
over subsequent frames. Use correspondences to extract extrinsics by PnP.
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ii. Option 2: Use checkerboard and extract homographies. Use homogra-
phies to compute extrinsics (position). This is essentially Zhang’s camera
calibration approach.

(b) Assign some set of landmarks to an object. which should be labelled. Possibly
use markers (e.g. April Tags) to identify objects that should be augmented.

(c) For subsequent images: track keypoints that correspond to scene landmarks.

(d) Add text label output image and position every label to the centroids of all
keypoints that belong to (some set of landmarks / some distinct object).

3. Suppose that your task is to reconstruct an object from different views. How do you
proceed?

Answer.

(a) Sparse reconstruction (only features, no smooth surface):
Do we know the relative position of the viewpoints?

i. YES (stereo vision, sequential SfM): Get the 2D-2D correspondences by
extracting and matching features. Use correspondences to determine rel-
ative camera poses and triangulate landmarks. Track keypoints over sub-
sequent frames and use landmark-keypoint correspondences to determine
the camera poses. Extract and triangulate additional landmarks if their
base line / bearing angle allows sufficient accuracy.

ii. NO (structure from motion, hierarchical SfM): Get 2D-2D correspon-
dences by extracting and matching features. Estimate fundamental/essential
matrix (8 point algorithm) and decompose E into R and t. Use correspon-
dences and relative camera poses to triangulate landmarks.

(b) Dense reconstruction (dense region of pixels, smooth surface, preferred)

i. Choose reference image.

ii. For every pixel in the reference image, calculate aggregated photometric
error as a function of depth.

iii. The photometric error of a pixel is the reprojection error that results if
we reporoject the point to some other image (depending at what depth we
set the point). We get it evaluating the (SSD,SAD,NCC) difference of a
patch from all patches on the same epipole from another point of view.

iv. Aggregated photometric error is the sum of error functions from all further
images. The best depth estimate for a pixel in the reference image will
minimize the aggregated photometric error function.

v. Evaluate Disparity Space Image (DSI) by combining all error functions of
all pixels in a 3D error funcion depending on (u,v and depth).

vi. Global Regularization: Ensure smoothness by penalizing non-smooth areas
and minimizing global energy.

4. Building a panorama stitching application. Summarize the building blocks.

(a) Feature Extraction: find distinct features that are independent of changes
in scale, rotation, illumination or viewpoint angle (e.g. corner or blobs).
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(b) Feature Description: Establish descriptors for all features. (binar descrip-
tors, census transform, intensity patches,...).

(c) Feature Matching: Use difference measure (SSD,SAD,NCC) to find close
features.

(d) Optional RANSAC: Use RANSAC to filter outlier matches.

(e) Feature Alignment: Scale, rotate and warp images to align as many feature
matches as possible.

5. How would you design a mobile tourist app? The user points the phone in the
direction of a landmark and the app displays tag with the name of it. How would
you implement it?

(a) Indexing: use of landmarks to create image Bag Of Words index for each
landmark.

(b) Place recognition: compare camera image to image index and identify if any
of the landmarks is present.

(c) AR: If some landmarks is present, use the BoW inde to identify keypoints in
the camera image that correspond to the landmark. Display tag with the name
of the landmark located in the centroid of all keypoints identified to belong to
some landmark.

6. Assume that we have several images downloaded from flicker showing the two towers
of Grossmunster. Since such images were uploaded by different persons they will have
different camera parameters (intrinsic and extrinsic), different lighting, different
resolutions and so on. If you were supposed to create a 3D model of Grossmunster,
what kind of approach would you use? Can you get a dense 3D model or it will be
a sparse one? Please explain the pipeline that you propose for this scenario.

(a) Hierarchical SfM:

i. Identify clusters of nearby images by extracting and matching features.

ii. Perform SfM for every cluster and build point cloud.

iii. Merge clusters pairwise and refine poses and structure by minimiting the
reprojection errors of landmarks across different viewpoints.

7. Assume that you move around a statue with a camera and take pictures in a way
that the statue is not far from the camera and always completely visible in the image.
If you were supposed to find out where the pictures were taken, what would you do
with the images? What kind of approach would you use? Since the camera motion
is around the statue, the images contain different parts of the statue. How do you
deal with this problem?

(a) Feature matching across sequential frames.

(b) Estimate relative motion between frames using 2D-2D correspondences (8 point,
5 point algorithms) and extracting R and t from the Fundamental matrix (un-
calibrated!) or the Essential matrix (calibrated!).

(c) Optional: refine poses when a loop is detected and features from the first image
are detected.
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8. Suppose that you have two robots exploring an environment, explain how the robots
should localize themselves and each other with respect to the environment? What
are the alternative solutions?

(a) Localization:

i. Monocular Visual SLAM or Stereo Camera Visual SLAM for drift resistant
odometry and map building (to prevent drift).

ii. IMU for accurate localization and to add absolute scale to the localization.

iii. GPS to improve global accuracy.

iv. Laser triangulation sensor for map building (LIDAR)

v. Combine multiple of these options and use a filter to get the final localiza-
tion (e.g. Kalman Filter).

(b) Communication

i. Wirelessly share built maps and current position.

ii. Possibly visual tracking and recognition of close robots using markers or
other templates.

iii. Possibly measurement of distance and heading of close robots by radio
transmission (measure time and signal direction).
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5 Mini Project Exam Preparation
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