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Abstract: When designing autonomous systems, we need to consider multiple trade-offs at
various abstraction levels, and choices of single (hardware and software) components need
to be studied jointly. For instance, the design of future mobility solutions (e.g., autonomous
vehicles) and the design of the mobility systems they enable are closely coupled. Indeed,
knowledge about the intended service of novel mobility solutions would impact their design and
deployment process, whilst insights about their technological development could significantly
affect transportation policies.
Co-designing autonomous systems is a complex task for at least two reasons. First, the co-design
of interconnected systems (e.g., networks of cyber-physical systems) involves the simultaneous
choice of components arising from heterogeneous fields, while satisfying systemic constraints
and accounting for multiple objectives. Second, components are connected via interactions
between different stakeholders. I will present a framework to co-design such systems, leveraging a
monotone theory of co-design. The framework will be instantiated in applications in mobility and
autonomy. Through various case studies, I will show how the proposed approaches allow one to
efficiently answer heterogeneous questions, unifying different modeling techniques and promoting
interdisciplinarity, modularity, and compositionality. I will then discuss open challenges for
compositional systems design optimization.

Keywords: Robotics; Large Scale Complex Systems; Transportation Systems; Intelligent
Autonomous Vehicles; Systems and Control for Societal Impact; Networked Systems

1. INTRODUCTION

The proper study of manking is the science of design.
— Herbert A. Simon.

The design and operation of complex systems stands out
as one of the paramount challenges of this century. Such
systems are labeled as complex not only due to the intrica-
cies of their individual components, but also because their
functioning hinges on complex interactions among these
components. To give a sense of the kind of systems we are
interested in, think about the complex circuit governing
a sensor employed in autonomous driving contexts, an
autonomous vehicle which leverages the sensor, as well as
a number of other complex hardware and software com-
ponents within the autonomy stack, a fleet of autonomous
vehicles of this kind, deployed following certain principles,
and interacting via complex patterns, and a complex mo-
bility system leveraging autonomous mobility-on-demand
(i.e., the fleet) systems as well as standard transit options.
Each of these systems is complex per se, and is influenced
and influences other ones at different scales.

How do we assess the impact of local design decisions at
the system level? How can we formulate, and automatically

solve co-design problems involving such complex systems?
Traditionally, the design optimization of selected compo-
nents is treated in a compartmentalized manner, blocking
the collaboration of multiple designers, and modularity.

In the context of autonomous systems, existing techniques
do not allow one to simultaneously consider the specificity
and formality of technical results for selected disciplines
(e.g., decision making and perception), and more practical
trade-offs related to energy consumption, computational
efforts, performance, and monetary costs.

This matter is discussed in my dissertation (Zardini
(2023)), and references therein.

Desiderata and challenges

To deal with the above, one needs a comprehensive task-
driven co-design automation theory, allowing multiple do-
mains to interact, clearly specifying components, and their
interactions at the system level. In particular, a successful
framework should achieve the following desiderata.

Formal Complex systems consist of diverse components,
and the abstraction one chooses for the design exercise
must transcend particular domains. At the same time,



to be tangible, the abstraction must be mathematically
precise, avoiding vague statements about the problem at
hand. Furthermore, we typically want to characterize all
the objectives of the design problem, without sacrifices.

Compositional First, we have to account for horizontal
composition. This refers to the interconnections and inter-
actions of different components and their configuration.
Indeed, in most cases, choices that are made at the level
of components without looking at the entire system are
doomed to be suboptimal. Second, we have to consider
vertical (i.e., hierarchical) composition. This refers to the
principle “your system is just a component in someone
else’s system”.

Collaborative There are two types of collaboration. First,
there is a collaboration between human and machine, in
the definition and solution of co-design problems. Second,
and most importantly, is the collaboration among different
“experts” or teams in the design process.

Computationally tractable One needs to be able to com-
pute solutions of the design problem efficiently. There-
fore, we strive to create not only a qualitative modeling
framework for co-design, but also a formal and quanti-
tative description that will be suitable for setting up an
optimization problem which can be solved to obtain an
optimal design.

Continuous Rather than viewing designs as a single de-
cision made at one point in time, one must see them as
continuously evolving entities. The designer should be able
to smoothly characterize this evolution within a framework
of co-design.

Manipulable Not only we want the designer to be able to
specify models for design problems, and to do that over
time, but we also want the whole problem manipulation
process to be smooth. For instance, we might need to
ignore certain objectives, ask different questions given the
same co-design architecture, etc.

Intellectually tractable The design process should not
be limited to system architects and specialists. Rather,
it should be collaborative. Sometimes, when developing
design optimization tools, one confuses the developer’s and
the user’s viewpoints. While we want the chosen formalism
to possess the above properties, we also want stakeholders
to take an active role. This sets the need for a simple,
cross-domain user interface.

2. A MONOTONE THEORY OF CO-DESIGN

This section is a quick summary of the main concepts
related to the monotone theory of co-design, presented in
great detail in Censi (2015); Censi et al. (2024); Zardini
(2023), with insights into the developer viewpoint. The
reader is assumed to be familiar with basic concepts of
order theory (a good source is Davey and Priestley (2002)).

2.1 Formulating co-design problems

The monotone theory of co-design is based on the atomic
notion of a monotone design problem with implementation
(MDPI).

Definition 1. Given partially ordered sets (posets) F,R,
(functionalities and resources), we define a MDPI as a tu-
ple ⟨Id, prov, reqs⟩, where Id is the set of implementations,
and prov, reqs are maps from Id to F and R, respectively:

F prov←−− Id
reqs−−→ R.

We compactly denote the MDPI as d : F R. Further-
more, to each MDPI we associate a monotone map d̄, given
by:

d̄ : Fop ×R → ⟨P(Id),⊆⟩
⟨f∗, r⟩ 7→ {i ∈ Id : (prov(i) ⪰F f) ∧ (reqs(i) ⪯R r)},

where (·)op reverses the order of a poset. The expres-
sion d̄(f∗, r) returns the set of implementations (design
choices) S ⊆ Id for which functionalities f are feasible with
resources r. We represent a MDPI in diagrammatic form
as a block with green wires on the left for functionalities,
and dashed red ones on the right for resources.

Remark 2. (Monotonicity). Consider a MDPI for which
we know d̄(f∗, r) = S.

• f ′ ⪯F f ⇒ d̄(f ′∗, r) = S′ ⊇ S. Intuitively, decreas-
ing the desired functionalities will not increase the
required resources;
• r′ ⪰R r ⇒ d̄(f∗, r′) = S′′ ⊇ S. Intuitively, increasing
the available resources cannot decrease the provided
functionalities.

For related examples and detailed explanations we refer to
our draft book and my dissertation (Censi et al. (2024);
Zardini (2023)).

Remark 3. (Populating models). In practical cases, one
can populate the feasibility relations of MDPIs with an-
alytic relations (e.g. cost functions, precise relationships),
numerical analysis of closed-form relations (e.g., optimal
control problems), and in a data-driven fashion (e.g., via
POMDPs, simulations, or by solving instances of opti-
mization problems). For detailed examples refer to Zardini
(2023); Zardini et al. (2021a,b, 2022).

Individual MDPIs can be composed in several ways to
form a co-design problem (a multigraph of MDPIs), al-
lowing one to decompose a large problem into smaller
subproblems, and to interconnect them. An exhaustive list
of compositions is provided in Censi et al. (2024); Zardini
(2023). Series composition happens when a functionality
of a MDPI is required by another MDPI (e.g., the power
provided by a battery is needed by an electric motor to
produce torque). The symbol “⪯” is the posetal relation,
which represents a co-design constraint: the resource one
problem requires, cannot exceed the functionality another
problem provides. Parallel composition formalizes decou-
pled processes happening together, and loop composition
describes feedback. 1 Notably, MDPIs are closed under
compositions (i.e., a composition of MDPIs is an MDPI).

2.2 Solving co-design problems

Definition 4. Given a MDPI d, we define monotone maps

• hd : F → AR, mapping a functionality to the mini-
mum antichain of resources providing it;

1 The formalization of feedback makes the category of MDPIs a
traced monoidal category Zardini (2023).



• h′
d : R → AF, mapping a resource to the maximum

antichain of functionalities provided by it.

Solving MDPIs requires finding such maps. If such maps
are Scott continuous, and posets involved are complete,
one can rely on Kleene’s fixed point theorem to design an
algorithm solving the queries “fix a functionality and find
minimum resources to achieve it” and “fix a resource and
find maximum functionalities that can be achieved” (and
the related design choices).

The resulting algorithm is guaranteed to converge to the
set of optimal solutions, or to provide a certificate of
infeasibility. Furthermore, the complexity of solving such
problems is only linear in the number of options available
for each component (as opposed to combinatorial). For
more details, see Zardini (2023).

2.3 Compositional perspective

The modeling and algorithmic results presented in the pre-
vious subsections can be elegantly summarized by defining
locally posetal, traced monoidal categories of design prob-
lems, of solutions (i.e., maps of the form of Definition 4).
The solution algorithm emerges from a functor between
the two categories (i.e., the “solution of composition of
MDPIs is the composition of solutions of single MDPIs”).

2.4 From autonomy to future mobility

The presented framework has been applied to various
problems in automotive, autonomy, and transportation.
Here, we report an exemplary application all the way
from autonomy to future mobility (Figure 1). Starting
from a model of an intermodal mobility system, one
builds the interconnected co-design diagram, populates it
via models of diverse nature (e.g., catalogue-based, via
first principles, and data-driven) and efficiently solves it
finding insightful trade-offs for policy makers (Zardini
et al. (2023)). For instance, we are able to assess the trade-
offs of average travel time in a city, and total investment
costs for the municipality, characterizing each solution by
the chosen technologies and fleet sizes for the different
mobility options. In a similar way, one can model the
task-driven co-design of a single autonomous vehicle, and
characterize trade-offs of task complexity and monetary
and power requirements. Thanks to the compositionality
properties of the approach, one can now model the task-
driven co-design of a single autonomous vehicle in a fleet
and solve it, obtaining insights all the way from the
platform level (e.g., controllers, sensors, algorithms) to the
system level (e.g., policies of a municipality).

3. OUTLOOK

In this extended abstract, we compactly presented a new
class of tools to model and solve complex system design
optimization problems. This class of tools is new, and sets
the stage for several directions for future research.

Co-design Games The presented framework is naturally
collaborative and decentralized, and allows one to consider
multiple (often conflicting) objectives. However, it is es-
sential to acknowledge a fundamental assumption that un-
derpinned our previous applications: the presumption that

while multiple designers may model different components
within a complex architecture, they all share a common
interest in minimizing a predefined set of objectives. This
is suitable for a specific subset of engineering design prob-
lem (e.g., designing an autonomous vehicle). However, it
necessitates further developments to explicitly account for
strategic design interactions (e.g., when designing a multi-
stakeholder mobility system). In short, we should develop
a theory of co-design games. A starting point was provided
via posetal games in Zanardi et al. (2021).

Spatio-temporal resources So far, we have not explicitly
attached a time-related aspect to resources and func-
tionalities. Interestingly, this would extend the notion of
optimization query as well. For instance, one could be
interested in the minimal sequence of resources, such that a
certain functionality is achieved by a certain time instant.

Computation-aware Solution Schemes Up to this point,
the approach involved creating a specific co-design dia-
gram, determining how to populate each individual design
problem within it, and then addressing a particular query.
In the future, we would be interested in conducting this
process with a computation-aware approach, designing
algorithms which autonomously determine which model
to sample based on the existing partial solution.
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Fig. 1. Exemplary application of the co-design toolbox, from the co-design of an autonomous vehicle, to the co-design
of an urban mobility system.


