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Lecture 03: Image Formation Part II

1 Image Formation Continued

In this segment we are going to introduce linear and non-linear methods for determining
the pose of the camera in the world.

1.1 Nonlinear Algorithms

1.1.1 Pose determination from n Points (PnP) Problem

Problem Description

Given the realitve spatial locations of n control points and given the angle to every pair
of control points from an additional point called the Center of Perspective CP , find the
lengths of the line segments joining CP to each of the control points.
We assume we know the camera intrinsic parameters. Given known 3D landmarks in the
world and their image correspondence in the camera frame, determine the 6DOF pose of
the camera in the world frame. Where is the camera?

Behaviour of the Solutions

• Given 1 point: ∞ solutions.

• Given 2 points: ∞ bounded solutions.

• Given 3 non collinear points: finitely many (up to 4) solutions.

• Given 4 points: unique solution.

P3P: Solution for 3 Points

The 3-points case is depicted in Figure 1. In order to solve this instance of the problem,

Figure 1: PnP for 3 points.
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one can use the fact that the angles inscribed in the triangle are the same: the Carnot’s
theorem for them reads

s21 = L2
B + L2

C − 2LBLC cos(θBC)

s22 = L2
A + L2

C − 2LALC cos(θAC)

s23 = L2
A + L2

B − 2LALB cos(θAB)

(1.1)

In general, n independent polynomials with n unknowns, can have no more solutions than
the product of their degrees: here 8.
The fourth point is needed to disambiguate the solutions! By defining

x =
LB

LA

, (1.2)

we can reduce the system to the 4th order equation

G0 +G1x+G2x
2 +G3x

3 +G4x
4 = 0. (1.3)

This applies to camera pose estimation from known 3D − 2D correspondences (e.g.
hololens).

1.2 Linear Algorithms

1.2.1 Camera Calibration

Camera calibration represents a procedure to determine intrinsic and extrinsic param-
eters of the camera model.

Tsai Method

Tsai proposed in 1987 a procedure consisting in measuring the 3D position of more than
6 points (also known as control points) on a 3D calibration target and the 2D coordinates
of their projection in the image. This problem is known as resection or perspective from
n points and is extremely widely used. This algorithm can be written, by recalling the
perspective projection equation and by neglecting the radial sensor distortion.
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Direct Linear Transform (DLT)

The goal of this procedure is to determine matrices K, R, and T which satisfy the per-
spective projection equation. Let’s recall the representation of an image point:

Image point = p̃ =

 ũṽ
w̃

 = λ

uv
1

 = K[R|T ] ·


Xw

Yw
Zw

1



=

αu 0 u0
0 αv v0
0 0 1

 ·
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 ·

Xw

Yw
Zw

1



Assuming independent elements =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34


︸ ︷︷ ︸

M

·


Xw

Yw
Zw

1



=

mᵀ
1

mᵀ
2

mᵀ
3

 ·

Xw

Yw
Zw

1


︸ ︷︷ ︸

P

,

(1.4)

where mᵀ
i represents the i-th row of the unknown matrix M .

One can now exploit the conversion from homogeneous coordinates to pixel coordinates
and gets:

u =
ũ

w̃
=
mᵀ

1 · P
mᵀ

3 · P
,

v =
ṽ

w̃
=
mᵀ

2 · P
mᵀ

3 · P
,

(1.5)

which can be rewritten as

(mᵀ
1 − uim

ᵀ
3) · Pi = 0,

(mᵀ
2 − vim

ᵀ
3) · Pi = 0,

(1.6)

for all points Pi. Rearranging the terms for one point results in the compact matrix
equation (

P ᵀ
1 0ᵀ −u1P ᵀ

1

0ᵀ P ᵀ
1 −v1P ᵀ

1

)
·

m1

m2

m3

 =

(
0
0

)
. (1.7)

Generalizing this structure for n points, one gets a 2n × 12 matrix Q, such that the
problem can be written as

Q ·M = 0, (1.8)

where Q is known and M is unknown.
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Minimal Solution:

In order for the system to have a unique (up to scale) non-trivial (different from 0)
solution M , the 2n× 12 matrix Q should have rank 11 (i.e. at most rank deficient by 1).
Since each 3D-to-2D point correspondence provides 2 independent equations, a total of
11
2

= 5+ 1
2

point correspondences are needed. Clearly, in practice 6 point correspondences
are needed.

Overdetermined Solution:

As soon as one has more that 6 points, the equations will overdetermine the solution and
a minimization approach will be needed. One of the possible approaches is to minimize
the euclidean norm

‖Q ·M‖2, (1.9)

subject to the constraint
‖M‖2 = 1, (1.10)

i.e., normed solution. This can be solved using Singular Value Decomposition (SVD). The
solution is then represented by the eigenvector corresponding to the smallest eigenvalue
of the matrix QᵀQ. In fact, this vector is the unit vector which minimizes the expression

‖Qx‖2 = xᵀQᵀQx. (1.11)

In Matlab, this translates into

[U,S,V] = svd(Q);

M = V(:,12);

Degenerated Configurations:

Are all points useful for this procedure? In the following, we provide a list of situations
where the points don’t provide enough information for the calibration to be feasible.

• Points lying on a plane and/ or along a line passing through the projection center.

• Camera and points on a twisted cubic (degree 3).

Once we have M = K(R|T ), we have a matrix which encodes the camera intrinsics and
extrinsics. Recalling

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 =

αu 0 u0
0 αv v0
0 0 1

 ·
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 , (1.12)

one can use the QR-factorization of M to separate intrinsics and extrinsics. In fact, the
factorization decomposes M into an orthogonal matrix R,T and an upper triangular matri
K.

Remark. Notice that we are not enforcing orthogonality of R.
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Tsai Method 1987

Tsai method can be essentially described through the following blocks:

1. Edge detection.

2. Straight line fitting to the detected edges.

3. Intersecting the lines to obtain the image corners (<0.1 pixels accuracy).

4. Use more than 6 points (more than 20) and not all on the same plane.

Originally pixels were not considered to be squared (i.e., the two focal lengths were dif-
ferent). Furthermore, a skew factor (K12 6= 0) was considered and the pixels were paral-
lelogramms instead of rectangles. Most cameras today are well manufactured and have
hence

αu

αv

= 1, K12 = 0. (1.13)

Residual: With the term residual, one refers to the average reprojection error, com-
puted as the distance (in pixels) between the observed point and the camera-reprojected
3D point. This measure gives an intuition on the accuracy of the calibration.

What if K is known? Nothing changes!

Calibration from Planar Grids (Homographies)

Tsai calibration required observed points not to lie on the same plane. An alternative
method (today’s standard camera calibration method) consists of using a planar grid
(e.g. a chessboard) and a few images of it shown at different orientations. This method
was invented by Zhang, now at Microsoft Research. Given that all the points on the
chessboard lie on a plane, we can set Zw = 0. It holds ũṽ

w̃

 =

αu 0 v0
0 αv v0
0 0 1

 ·
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 ·

Xw

Yw
0
1


=

αu 0 0
0 αv ν0
0 0 1

 ·
r11 r12 t1
r21 r22 t2
r31 r32 t3

 ·
Xw

Yw
1


= H ·

Xw

Yw
1


=

hᵀ1hᵀ2
hᵀ3

 ·
Xw

Yw
1

 .

(1.14)

Matrix H is called Homography. One can exploit once more the conversion from ho-
mogeneous coordinates to pixel coordinates and gets

u =
ũ

w̃
=
hᵀ1 · P
hᵀ3 · P

,

v =
ṽ

w̃
=
hᵀ2 · P
hᵀ3 · P

,

(1.15)

5



Gioele Zardini Vision Algorithms for Mobile Robotics HS 2018

and hence

(hᵀ1 − uih
ᵀ
3) · Pi = 0

(hᵀ2 − vih
ᵀ
3) · Pi = 0,

(1.16)

for all points Pi. Rearranging the terms, one has

Q ·H = 0(
P ᵀ
1 0ᵀ −u1P ᵀ

1

0ᵀ P ᵀ
1 −v1P ᵀ

1

)
·

h1h2
h3

 =

(
0
0

)
,

(1.17)

where Q is known and H is unknown. Since we dropped Zw from the unknowns, the
generalized structure for n points makes Q a 2n× 9 matrix.

Minimal Solution:

In order for the system to have a unique (up to scale) non-trivial (different from 0) solution
H, the 2n× 9 matrix Q should have rank 8 (i.e. at most rank deficient by 1). Since each
3D-to-2D point correspondence provides 2 independent equations, a total of 8

2
= 4 point

correspondences (with non-collinear points) are needed.

Overdetermined Solution:

As soon as one has more that 4 points, the equations will overdetermine the solution and
a minimization approach will be needed. One of the possible approaches is to minimize
the euclidean norm

‖Q ·M‖2, (1.18)

subject to the constraint
‖M‖2 = 1, (1.19)

i.e., normed solution, as previously explained.

Applications of homographies are

• Augmented reality

• Beacon-based localization.

Remark. If the camera is calibrated, only R and T need to be determined. Pnp leads to
smaller error than DLT.

1.3 Non Conventional Camera Models

1.3.1 Omnidirectional Cameras

Omnidirectional sensors come in many varieties, but by definition must have a wide field-
of-view (FOV). We can find:

• Wide FOV dioptric cameras (e.g. fisheye (180)).

• Catadioptric cameras (e.g. mirrors (>180)). Combine a standard camera with a
shaped mirror.
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– Mirror: central, mirror (surface of revolution of a conic), single effective view
point.

– Perspetive: hyperbola+perspective / parabola+orthographic lens.

• Polydioptric cameras (e.g. multiple overlapping cameras) ≈ 360.

Definition 1. A vision system is said to be central, when the optical rays to the viewed
objects intersect into a single point in 3D called projection center or single effective view-
point. For hyperbolic and elliptical mirrors, the single viewpoint property is achieved by
ensuring that the camera center coincides with one of the foci of the hyperbola (ellipse).
For this, refer to Figure 2

In general, mirrors which ensure centrality of the camera are rotated (swept) conic shapes
(hyperbolical, parabolical and elliptical mirrors).
Why is it important for the camera to be central? If the camera is central, we
can unwarp parts of the omnidirectional image into perspective. We can transform image
points in the unit sphere. We can apply algorithms for perspective geometry. Perspective
and omnidirectional model are equal!

Figure 2: How should the mirrors be?
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1.4 Understanding Check

Are you able to:

• Describe the general PnP problem and derive the behaviour of its solutions?

• Explain the working principle of the P3P algorithm?

• Explain DLT? What is the minimum number of point correspondences it requires?

• Define centeral and non central omnidirectional cameras?

• What kind of mirrors ensure central projection?
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