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Lecture 13: Visual Inertial Fusion

1 Introduction

1.1 Pose Graph Optimization

So far we assumed that the transformations are between consecutive frames, but they can
be computed between non adjacent frames Tij as well (e.g. when features from previous
keyframes are still observed). They can be used as additional constraints to improve
cameras poses by minimizing the following error measure:

Ck = argminck

∑
i

∑
j

‖Ci − Cj · Tij‖2 (1.1)

• For efficiency, only the last m keyframes are used.

• Gauss-Newton or Levenber-Marquadt are typically used to minimize it. For large
graphs, there are open source tools.

Figure 1: Pose graph optimization.

1.2 Bundle Adjustment (BA)

This incorporates the knowledge of landmarks (3D points).

X i, Ck = argminXi,Ck

∑
i

∑
k

ρ
(
pik − π(X i, Ck)

)
. (1.2)

Outliers represent an issue: how can we penalize them? In order to penalize wrong
matches, we can use the Huber or the Turkey costs:

Huber: ρ(x) =

{
x2, if |x| ≤ k

k · (2|x| − k) if |x| ≥ k

Tukey: ρ(x) =

α
2 if |x| ≥ α

α2 ·
(

1−
(

1−
(
x
α

)2
)3
)

if |x| ≤ α.

(1.3)
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1.3 Bundle Adjustment vs Pose-graph Optimization

In generale, one can conclude the following:

• BA is more precise than pose-graph optimization because it adds additional con-
straints (landmark constraints).

• BA is but more costly: O((qM + lN)3) with M and N being the number of points
and camera poses and q and l the number of parameters for points and camera
poses. The Jacobian is cubic in q and l. Workarounds are

– A small window size limits the number of parameters for the optimization and
thus makes real-time bundle adjustment possible.

– It is possible to reduce the computational complexity by just optimizing the
camera parameters and keeping the 3D landmarks fixed, e.g. freeze the 3D
points and adjust the poses

Figure 2: Tukey vs. Huber norm.

Figure 3: Bundle Adjustment.
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2 IMU and Camera-IMU System

2.1 IMU Definition

Inertial Mesaurement Unit. Measures angular velocity and linear accelerations. One
can find:

• Mechanical: spring/damper system.

• Optical: Phase shift projected laser beams is proportional to angular velocity.

• MEMS (accelerometer): a spring-like structure connects the device to a seismic mass
vibrating in a capacitive divider. A capacitive divider converts the displacement of
the seismic mass into an electric signal. Damping is created by the gas sealed in the
device.

• MEMS (gyroscopes): measure the Coriolis forces acting on MEMS vibrating struc-
tures. Their working principle is similar to the haltere of a fly. Have a look!

2.2 Why IMUs?

In the following, we list reasons to use IMUs:

• Monocular vision is scale ambiguous.

• Pure vision is not robust enough (Tesla accident):

– Low texture.

– High dynamic range.

– High speed motion.

2.3 Why not just IMU? Why Vision?

Pure IMU integration will lead to large drift (especially cheap IMUs). Integration of
angular velocity to get orientation: error proportional to t. Double integration to get
position: if there is a bias in acceleration, the error of position is proportional to t2.
The actually position error also depends on the error of orientation.

2.4 Why visual inertial fusion?

In the following, we list advantages (+) and disadvantages (-) of cameras and IMUs:

• Cameras

+ Precise in slow motion.

+ Rich information for other purposes

- Limited output rate (∼ 100Hz)

- Scale ambiguity in monocular setup.

- Lack of robustness
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• IMU

+ Robust.

+ High output rate (∼ 1000Hz).

+ Accurate at high acceleration.

- Large relative uncertainty when at low acceleration/angular velocity.

- Ambiguity in gravity / acceleration.

Together, they can work for state estimation: loop detection and loop closure.

2.5 IMU: Measurement Model

ω̃BWB(t) = ωBWB(t) + bg(t) + ng(t)

ãBWB(t) = RBW (t) ·
(
aWWB(t)− gW

)
+ ba(t) + na(t)

(2.1)

where g stands for gyroscope and a for accelerometer. The noise is additive Gaussian
white noise. The bias has own dynamics

ḃ(t) = σb · w(t), (2.2)

i.e. the derivative of the bias is white Gaussian noise (random walk). In discrete time,
one writes

b[k] = b[k − 1] + σbd · w[k], w[k] ∼ N (0, 1), σbd = σb ·
√
t (2.3)

In general, IMU biases:

• Can be estimated,

• Can change due to temperature change, mechanical pressure,..

• Can change everytime the IMU is started.

Integration leads to

pWt2 = PWt1 + (t2 − t1)vWt1 +

∫ ∫ t2

t1

RWt(t) (ã(t)− ba(t) + gw) dt2, (2.4)

which depends on initial position and velocity. The rotation R(t) can be computed with
a giroscope.

2.5.1 Different Paradigms

Loosely Coupled Approach

It treats VO and IMU as two separate (not coupled black boxes). Each block estimates
pose and velocity from visual and inertial data (pose and velocity up to a scale and
inertial data in absolute scale).

Tightly Coupled Approach

It makes use of the raw sensors’ measurements: 2D features, IMU readings, more accurate,
more implementation effort.
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Figure 4: Loosely Coupled Approach.

Figure 5: Tightly Coupled Approach.

2.5.2 Filtering: Visual Inertial Formulation

System states are:

• Tightly Coupled: X =
(
pW (t); qWB(t); vW (t); ba(t); bg(t);Lw,1; . . . ;Lw,K

)
, with L

Landmarks.

• Loosely Coupled X =
(
pW (t); qWB(t); vW (t); ba(t); bg(t)

)
Closed-form Solution (1D case)

The absolute pose x is known up to a scale s, thus

x = sx̃. (2.5)

From the IMU we get

x = x0 + v0 · (t1 − t0) +

∫ ∫ t1

t0

a(t)dt (2.6)

By equating them we get

sx̃ = x0 + v0 · (t1 − t0) +

∫ ∫ t1

t0

a(t)dt. (2.7)
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As shown, for 6DOF both s and v0 can be determined from a single feature observation
and 3 views. x0 can be set to 0. It holds

sx̃1 = v0 · (t1 − t0) +

∫ ∫ t1

t0

a(t)dt

sx̃2 = v0 · (t2 − t0) +

∫ ∫ t2

t0

a(t)dt

⇒
(
x̃1 (t0 − t1)
x̃2 (t0 − t2)

)
·
(
s
v0

)
=

(∫ ∫ t1
t0
a(t)dt∫ ∫ t2

t0
a(t)dt

)
.

(2.8)

Closed-form Solution (general case)

Consider N feature observations and 6DOF case. Can be used to initialize filter and
smoothers. One can show hat a linear system of equations can be achieved and solved
using the pseudoinverse:

AX = S, (2.9)

where X is the vector of unknowns (3D point distances, absolute scle, initial velocity,
gravity vector, biases). A and S contain 2D feature coordinates, acceleration, and angular
velocity measurements.

Different Paradigms

Figure 6: Different Paradigms.

E.g. ROVIO, minimizes the photometric error instead of the reprojection error.
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2.5.3 Filtering: Problems

• Wrong linearization point: linearization depends on the current estimates of states,
which can be wrong.

• Complexity of the EKF grows quadratically in the number of landmarks. Few
Landmarks are usually tracked to allow real time operation.

• Alternative: MSCKF: keeps a window of recent states and updates them using EKF.
Incorporate visual observation without including point positions into the states.

2.5.4 Maximum A Posteriori (MAP) Estimation

This corresponds to fusion solved as a non-linear optimization problem. Increased accu-
racy over filtering methods. We have

xk = f(xk−1), zk = h(xik , lij), (2.10)

where X are the robot states, L the 3D points and Z the features and IMU measurements.
It holds

{X∗, L∗} = argmaxX,LP (X,L|Z)

= argminX,L{
N∑
k=1

||f(xk−1)− xk||2Λk︸ ︷︷ ︸
IMU residuals

+
M∑
i=1

||h(xik)− zi||2Σi︸ ︷︷ ︸
Reprojection residuals

} (2.11)

An open problem is consistency:

• Filters: Linearization around different values of the same variable may lead to error.

• Smoothing methods: may get stuck in local minima.

2.6 Camera-IMU calibration

Goal: Estimate the rigid body transformation TBC and delay td between a camera and an
IMU rigidly attached. Assume that the camera has already been intrinsically calibrated.
Data: Image points of detected calibration pattern and IMU measurements (accelerom-
eter and gyroscope).
Approach: Minimize a cost function

J(θ) = Jfeat + Jacc + Jgyro + Jbiasacc + Jbiasgyro , (2.12)

using e.g. Levenberg-Marquardt.
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2.7 Understanding Check

Are you able to answer the following questions?

• Why should we use an IMU for Visual Odometry?

• Why not just an IMU?

• How does a MEMS IMU work?

• What is the drift of an industrial IMU?

• What is the IMU measurement model?

• What causes the bias in an IMU?

• How do we model the bias?

• How do we integrate the acceleration to get the position formula?

• What is the definition of loosely coupled and tightly coupled visual inertial fusions?

• How can we use non-linear optimization-based approaches to solve for visual inertial
fusion?
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